Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-adjfrombun Structured version   Visualization version   GIF version

Theorem bj-adjfrombun 37028
Description: Adjunction from singleton and binary union. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-adjfrombun (𝑥 ∪ {𝑦}) ∈ V

Proof of Theorem bj-adjfrombun
StepHypRef Expression
1 vex 3481 . 2 𝑥 ∈ V
2 bj-snexg 37016 . . 3 (𝑦 ∈ V → {𝑦} ∈ V)
32elv 3482 . 2 {𝑦} ∈ V
4 bj-unexg 37020 . 2 ((𝑥 ∈ V ∧ {𝑦} ∈ V) → (𝑥 ∪ {𝑦}) ∈ V)
51, 3, 4mp2an 692 1 (𝑥 ∪ {𝑦}) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  Vcvv 3477  cun 3960  {csn 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-12 2174  ax-ext 2705  ax-bj-sn 37015  ax-bj-bun 37019
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-un 3967  df-sn 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator