![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-adjfrombun | Structured version Visualization version GIF version |
Description: Adjunction from singleton and binary union. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-adjfrombun | ⊢ (𝑥 ∪ {𝑦}) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | bj-snexg 37000 | . . 3 ⊢ (𝑦 ∈ V → {𝑦} ∈ V) | |
3 | 2 | elv 3493 | . 2 ⊢ {𝑦} ∈ V |
4 | bj-unexg 37004 | . 2 ⊢ ((𝑥 ∈ V ∧ {𝑦} ∈ V) → (𝑥 ∪ {𝑦}) ∈ V) | |
5 | 1, 3, 4 | mp2an 691 | 1 ⊢ (𝑥 ∪ {𝑦}) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-bj-sn 36999 ax-bj-bun 37003 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |