Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleq2w2 | Structured version Visualization version GIF version |
Description: A weaker version of eleq2 2825 (but stronger than ax-9 2114 and elequ2 2119) that uses ax-12 2169 to avoid ax-8 2106 and df-clel 2814. Compare eleq2w 2820, whose setvars appear where the class variables are in this theorem, and vice versa. (Contributed by BJ, 24-Jun-2019.) Strengthen from setvar variables to class variables. (Revised by WL and SN, 23-Aug-2024.) |
Ref | Expression |
---|---|
eleq2w2 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2729 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | 2 | 19.21bi 2180 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 |
This theorem is referenced by: nfceqdf 2899 drnfc1 2923 drnfc2 2925 fineqvrep 33113 fineqvpow 33114 fineqvac 33115 f1omo 46432 |
Copyright terms: Public domain | W3C validator |