Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleq2w2 | Structured version Visualization version GIF version |
Description: A weaker version of eleq2 2828 (but stronger than ax-9 2119 and elequ2 2124) that uses ax-12 2174 to avoid ax-8 2111 and df-clel 2817. Compare eleq2w 2823, whose setvars appear where the class variables are in this theorem, and vice versa. (Contributed by BJ, 24-Jun-2019.) Strengthen from setvar variables to class variables. (Revised by WL and SN, 23-Aug-2024.) |
Ref | Expression |
---|---|
eleq2w2 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2732 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | 2 | 19.21bi 2185 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ∈ wcel 2109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 |
This theorem is referenced by: nfceqdf 2903 drnfc1 2927 drnfc2 2929 fineqvrep 33043 fineqvpow 33044 fineqvac 33045 f1omo 46140 |
Copyright terms: Public domain | W3C validator |