![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq2w2 | Structured version Visualization version GIF version |
Description: A weaker version of eleq2 2833 (but stronger than ax-9 2118 and elequ2 2123) that uses ax-12 2178 to avoid ax-8 2110 and df-clel 2819. Compare eleq2w 2828, whose setvars appear where the class variables are in this theorem, and vice versa. (Contributed by BJ, 24-Jun-2019.) Strengthen from setvar variables to class variables. (Revised by WL and SN, 23-Aug-2024.) |
Ref | Expression |
---|---|
eleq2w2 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . . 3 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpi 216 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | 2 | 19.21bi 2190 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: nfceqdf 2904 drnfc1 2928 drnfc2 2930 fineqvrep 35071 fineqvpow 35072 fineqvac 35073 fvineqsneu 37377 f1omo 48574 |
Copyright terms: Public domain | W3C validator |