MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2w2 Structured version   Visualization version   GIF version

Theorem eleq2w2 2722
Description: A weaker version of eleq2 2815 (but stronger than ax-9 2109 and elequ2 2114) that uses ax-12 2167 to avoid ax-8 2101 and df-clel 2803. Compare eleq2w 2810, whose setvars appear where the class variables are in this theorem, and vice versa. (Contributed by BJ, 24-Jun-2019.) Strengthen from setvar variables to class variables. (Revised by WL and SN, 23-Aug-2024.)
Assertion
Ref Expression
eleq2w2 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eleq2w2
StepHypRef Expression
1 dfcleq 2719 . . 3 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
21biimpi 215 . 2 (𝐴 = 𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
3219.21bi 2178 1 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wcel 2099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1775  df-cleq 2718
This theorem is referenced by:  nfceqdf  2887  drnfc1  2912  drnfc2  2914  fineqvrep  34941  fineqvpow  34942  fineqvac  34943  f1omo  48261
  Copyright terms: Public domain W3C validator