MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2w2 Structured version   Visualization version   GIF version

Theorem eleq2w2 2735
Description: A weaker version of eleq2 2822 (but stronger than ax-9 2124 and elequ2 2129) that uses ax-12 2179 to avoid ax-8 2116 and df-clel 2812. Compare eleq2w 2817, whose setvars appear where the class variables are in this theorem, and vice versa. (Contributed by BJ, 24-Jun-2019.) Strengthen from setvar variables to class variables. (Revised by WL and SN, 23-Aug-2024.)
Assertion
Ref Expression
eleq2w2 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eleq2w2
StepHypRef Expression
1 dfcleq 2732 . . 3 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
21biimpi 219 . 2 (𝐴 = 𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
3219.21bi 2190 1 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540   = wceq 1542  wcel 2114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-9 2124  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787  df-cleq 2731
This theorem is referenced by:  nfceqdf  2895  drnfc1  2919  drnfc2  2921  fineqvrep  32647  fineqvpow  32648  fineqvac  32649  f1omo  45758
  Copyright terms: Public domain W3C validator