|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-clel3gALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of clel3g 3661. (Contributed by BJ, 1-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-clel3gALT | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elisset 2823 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐵) | |
| 2 | 1 | biantrurd 532 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ (∃𝑥 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵))) | 
| 3 | 19.41v 1949 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵) ↔ (∃𝑥 𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵)) | |
| 4 | 2, 3 | bitr4di 289 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵))) | 
| 5 | eleq2 2830 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | 5 | bicomd 223 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝑥)) | 
| 7 | 6 | pm5.32i 574 | . . 3 ⊢ ((𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵) ↔ (𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥)) | 
| 8 | 7 | exbii 1848 | . 2 ⊢ (∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝐵) ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥)) | 
| 9 | 4, 8 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |