Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-clel3gALT Structured version   Visualization version   GIF version

Theorem bj-clel3gALT 35269
Description: Alternate proof of clel3g 3596. (Contributed by BJ, 1-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-clel3gALT (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-clel3gALT
StepHypRef Expression
1 elisset 2818 . . . 4 (𝐵𝑉 → ∃𝑥 𝑥 = 𝐵)
21biantrurd 534 . . 3 (𝐵𝑉 → (𝐴𝐵 ↔ (∃𝑥 𝑥 = 𝐵𝐴𝐵)))
3 19.41v 1951 . . 3 (∃𝑥(𝑥 = 𝐵𝐴𝐵) ↔ (∃𝑥 𝑥 = 𝐵𝐴𝐵))
42, 3bitr4di 289 . 2 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝐵)))
5 eleq2 2825 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
65bicomd 222 . . . 4 (𝑥 = 𝐵 → (𝐴𝐵𝐴𝑥))
76pm5.32i 576 . . 3 ((𝑥 = 𝐵𝐴𝐵) ↔ (𝑥 = 𝐵𝐴𝑥))
87exbii 1848 . 2 (∃𝑥(𝑥 = 𝐵𝐴𝐵) ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥))
94, 8bitrdi 287 1 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  wcel 2104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator