MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv3 Structured version   Visualization version   GIF version

Theorem reximddv3 3172
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
reximddv3.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
reximddv3.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximddv3 (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reximddv3
StepHypRef Expression
1 reximddv3.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21anasss 466 . 2 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
3 reximddv3.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
42, 3reximddv 3171 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-rex 3071
This theorem is referenced by:  rprmasso2  33566  rprmirredlem  33570  rnmptlb  45217  rnmptbddlem  45218  limclner  45635  climisp  45730  climrescn  45732  liminflbuz2  45799  liminflimsupxrre  45801  climxlim2lem  45829
  Copyright terms: Public domain W3C validator