| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv3 | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| reximddv3.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| reximddv3.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| reximddv3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddv3.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | anasss 466 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| 3 | reximddv3.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | reximddv 3158 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3060 |
| This theorem is referenced by: rprmasso2 33489 rprmirredlem 33493 rnmptlb 45207 rnmptbddlem 45208 limclner 45623 climisp 45718 climrescn 45720 liminflbuz2 45787 liminflimsupxrre 45789 climxlim2lem 45817 |
| Copyright terms: Public domain | W3C validator |