MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv3 Structured version   Visualization version   GIF version

Theorem reximddv3 3159
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
reximddv3.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
reximddv3.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximddv3 (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reximddv3
StepHypRef Expression
1 reximddv3.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21anasss 466 . 2 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
3 reximddv3.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
42, 3reximddv 3158 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-rex 3060
This theorem is referenced by:  rprmasso2  33489  rprmirredlem  33493  rnmptlb  45207  rnmptbddlem  45208  limclner  45623  climisp  45718  climrescn  45720  liminflbuz2  45787  liminflimsupxrre  45789  climxlim2lem  45817
  Copyright terms: Public domain W3C validator