![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnns | Structured version Visualization version GIF version |
Description: Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
elnns | ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nns 28104 | . . 3 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
2 | 1 | eleq2i 2817 | . 2 ⊢ (𝐴 ∈ ℕs ↔ 𝐴 ∈ (ℕ0s ∖ { 0s })) |
3 | eldifsn 4782 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ≠ wne 2932 ∖ cdif 3937 {csn 4620 0s c0s 27671 ℕ0scnn0s 28101 ℕscnns 28102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-v 3468 df-dif 3943 df-sn 4621 df-nns 28104 |
This theorem is referenced by: elnns2 28125 |
Copyright terms: Public domain | W3C validator |