MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnns Structured version   Visualization version   GIF version

Theorem elnns 28195
Description: Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elnns (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))

Proof of Theorem elnns
StepHypRef Expression
1 df-nns 28175 . . 3 s = (ℕ0s ∖ { 0s })
21eleq2i 2820 . 2 (𝐴 ∈ ℕs𝐴 ∈ (ℕ0s ∖ { 0s }))
3 eldifsn 4786 . 2 (𝐴 ∈ (ℕ0s ∖ { 0s }) ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
42, 3bitri 275 1 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2099  wne 2935  cdif 3941  {csn 4624   0s c0s 27742  0scnn0s 28172  scnns 28173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-v 3471  df-dif 3947  df-sn 4625  df-nns 28175
This theorem is referenced by:  elnns2  28196
  Copyright terms: Public domain W3C validator