MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnns Structured version   Visualization version   GIF version

Theorem elnns 28255
Description: Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elnns (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))

Proof of Theorem elnns
StepHypRef Expression
1 df-nns 28232 . . 3 s = (ℕ0s ∖ { 0s })
21eleq2i 2820 . 2 (𝐴 ∈ ℕs𝐴 ∈ (ℕ0s ∖ { 0s }))
3 eldifsn 4740 . 2 (𝐴 ∈ (ℕ0s ∖ { 0s }) ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
42, 3bitri 275 1 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wne 2925  cdif 3902  {csn 4579   0s c0s 27754  0scnn0s 28229  scnns 28230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3440  df-dif 3908  df-sn 4580  df-nns 28232
This theorem is referenced by:  elnns2  28256  nnsge1  28258  eln0s  28274  n0subs2  28277  dfnns2  28284
  Copyright terms: Public domain W3C validator