![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnns | Structured version Visualization version GIF version |
Description: Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
elnns | ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nns 28175 | . . 3 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ ℕs ↔ 𝐴 ∈ (ℕ0s ∖ { 0s })) |
3 | eldifsn 4786 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 0s c0s 27742 ℕ0scnn0s 28172 ℕscnns 28173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-v 3471 df-dif 3947 df-sn 4625 df-nns 28175 |
This theorem is referenced by: elnns2 28196 |
Copyright terms: Public domain | W3C validator |