| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnns | Structured version Visualization version GIF version | ||
| Description: Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| elnns | ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nns 28243 | . . 3 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ ℕs ↔ 𝐴 ∈ (ℕ0s ∖ { 0s })) |
| 3 | eldifsn 4738 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 0s c0s 27764 ℕ0scnn0s 28240 ℕscnns 28241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-sn 4577 df-nns 28243 |
| This theorem is referenced by: elnns2 28267 nnsge1 28269 eln0s 28285 n0subs2 28288 dfnns2 28295 |
| Copyright terms: Public domain | W3C validator |