MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnns Structured version   Visualization version   GIF version

Theorem elnns 28266
Description: Membership in the positive surreal integers. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elnns (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))

Proof of Theorem elnns
StepHypRef Expression
1 df-nns 28243 . . 3 s = (ℕ0s ∖ { 0s })
21eleq2i 2823 . 2 (𝐴 ∈ ℕs𝐴 ∈ (ℕ0s ∖ { 0s }))
3 eldifsn 4738 . 2 (𝐴 ∈ (ℕ0s ∖ { 0s }) ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
42, 3bitri 275 1 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  wne 2928  cdif 3899  {csn 4576   0s c0s 27764  0scnn0s 28240  scnns 28241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-sn 4577  df-nns 28243
This theorem is referenced by:  elnns2  28267  nnsge1  28269  eln0s  28285  n0subs2  28288  dfnns2  28295
  Copyright terms: Public domain W3C validator