| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsgt0 | Structured version Visualization version GIF version | ||
| Description: A positive integer is greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| nnsgt0 | ⊢ (𝐴 ∈ ℕs → 0s <s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssn0s 28254 | . . . 4 ⊢ ℕs ⊆ ℕ0s | |
| 2 | 1 | sseli 3939 | . . 3 ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ ℕ0s) |
| 3 | n0sge0 28270 | . . 3 ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ ℕs → 0s ≤s 𝐴) |
| 5 | nnne0s 28269 | . 2 ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) | |
| 6 | 0sno 27775 | . . . 4 ⊢ 0s ∈ No | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℕs → 0s ∈ No ) |
| 8 | nnsno 28257 | . . 3 ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ No ) | |
| 9 | 7, 8 | sltlend 27716 | . 2 ⊢ (𝐴 ∈ ℕs → ( 0s <s 𝐴 ↔ ( 0s ≤s 𝐴 ∧ 𝐴 ≠ 0s ))) |
| 10 | 4, 5, 9 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ ℕs → 0s <s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 No csur 27584 <s cslt 27585 ≤s csle 27689 0s c0s 27771 ℕ0scnn0s 28246 ℕscnns 28247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27587 df-slt 27588 df-bday 27589 df-sle 27690 df-sslt 27727 df-scut 27729 df-0s 27773 df-1s 27774 df-made 27792 df-old 27793 df-left 27795 df-right 27796 df-norec2 27896 df-adds 27907 df-n0s 28248 df-nns 28249 |
| This theorem is referenced by: nnsrecgt0d 28283 eucliddivs 28305 elnnzs 28329 expsnnval 28353 pw2gt0divsd 28372 pw2ge0divsd 28373 pw2sltdivmuld 28377 pw2sltmuldiv2d 28378 halfcut 28381 pw2cut 28383 zs12bday 28396 0reno 28401 |
| Copyright terms: Public domain | W3C validator |