MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnns2 Structured version   Visualization version   GIF version

Theorem elnns2 28238
Description: A positive surreal integer is a non-negative surreal integer greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elnns2 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))

Proof of Theorem elnns2
StepHypRef Expression
1 elnns 28237 . 2 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
2 nesym 2981 . . . . 5 (𝐴 ≠ 0s ↔ ¬ 0s = 𝐴)
3 n0sge0 28235 . . . . . . . 8 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)
4 0sno 27740 . . . . . . . . 9 0s No
5 n0sno 28221 . . . . . . . . 9 (𝐴 ∈ ℕ0s𝐴 No )
6 sleloe 27664 . . . . . . . . 9 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
74, 5, 6sylancr 587 . . . . . . . 8 (𝐴 ∈ ℕ0s → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
83, 7mpbid 232 . . . . . . 7 (𝐴 ∈ ℕ0s → ( 0s <s 𝐴 ∨ 0s = 𝐴))
98orcomd 871 . . . . . 6 (𝐴 ∈ ℕ0s → ( 0s = 𝐴 ∨ 0s <s 𝐴))
109ord 864 . . . . 5 (𝐴 ∈ ℕ0s → (¬ 0s = 𝐴 → 0s <s 𝐴))
112, 10biimtrid 242 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 ≠ 0s → 0s <s 𝐴))
12 sgt0ne0 27749 . . . 4 ( 0s <s 𝐴𝐴 ≠ 0s )
1311, 12impbid1 225 . . 3 (𝐴 ∈ ℕ0s → (𝐴 ≠ 0s ↔ 0s <s 𝐴))
1413pm5.32i 574 . 2 ((𝐴 ∈ ℕ0s𝐴 ≠ 0s ) ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))
151, 14bitri 275 1 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092   No csur 27549   <s cslt 27550   ≤s csle 27654   0s c0s 27736  0scnn0s 28211  scnns 28212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec2 27861  df-adds 27872  df-n0s 28213  df-nns 28214
This theorem is referenced by:  nnaddscl  28243  nnmulscl  28244
  Copyright terms: Public domain W3C validator