MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnns2 Structured version   Visualization version   GIF version

Theorem elnns2 28196
Description: A positive surreal integer is a non-negative surreal integer greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elnns2 (ðī ∈ ℕs ↔ (ðī ∈ ℕ0s ∧ 0s <s ðī))

Proof of Theorem elnns2
StepHypRef Expression
1 elnns 28195 . 2 (ðī ∈ ℕs ↔ (ðī ∈ ℕ0s ∧ ðī ≠ 0s ))
2 nesym 2992 . . . . 5 (ðī ≠ 0s ↔ ÂŽ 0s = ðī)
3 n0sge0 28193 . . . . . . . 8 (ðī ∈ ℕ0s → 0s â‰Īs ðī)
4 0sno 27746 . . . . . . . . 9 0s ∈ No
5 n0sno 28182 . . . . . . . . 9 (ðī ∈ ℕ0s → ðī ∈ No )
6 sleloe 27674 . . . . . . . . 9 (( 0s ∈ No ∧ ðī ∈ No ) → ( 0s â‰Īs ðī ↔ ( 0s <s ðī âˆĻ 0s = ðī)))
74, 5, 6sylancr 586 . . . . . . . 8 (ðī ∈ ℕ0s → ( 0s â‰Īs ðī ↔ ( 0s <s ðī âˆĻ 0s = ðī)))
83, 7mpbid 231 . . . . . . 7 (ðī ∈ ℕ0s → ( 0s <s ðī âˆĻ 0s = ðī))
98orcomd 870 . . . . . 6 (ðī ∈ ℕ0s → ( 0s = ðī âˆĻ 0s <s ðī))
109ord 863 . . . . 5 (ðī ∈ ℕ0s → (ÂŽ 0s = ðī → 0s <s ðī))
112, 10biimtrid 241 . . . 4 (ðī ∈ ℕ0s → (ðī ≠ 0s → 0s <s ðī))
12 sgt0ne0 27754 . . . 4 ( 0s <s ðī → ðī ≠ 0s )
1311, 12impbid1 224 . . 3 (ðī ∈ ℕ0s → (ðī ≠ 0s ↔ 0s <s ðī))
1413pm5.32i 574 . 2 ((ðī ∈ ℕ0s ∧ ðī ≠ 0s ) ↔ (ðī ∈ ℕ0s ∧ 0s <s ðī))
151, 14bitri 275 1 (ðī ∈ ℕs ↔ (ðī ∈ ℕ0s ∧ 0s <s ðī))
Colors of variables: wff setvar class
Syntax hints:  ÂŽ wn 3   ↔ wb 205   ∧ wa 395   âˆĻ wo 846   = wceq 1534   ∈ wcel 2099   ≠ wne 2935   class class class wbr 5142   No csur 27560   <s cslt 27561   â‰Īs csle 27664   0s c0s 27742  â„•0scnn0s 28172  â„•scnns 28173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8680  df-no 27563  df-slt 27564  df-bday 27565  df-sle 27665  df-sslt 27701  df-scut 27703  df-0s 27744  df-1s 27745  df-made 27761  df-old 27762  df-left 27764  df-right 27765  df-norec2 27853  df-adds 27864  df-n0s 28174  df-nns 28175
This theorem is referenced by:  nnaddscl  28199  nnmulscl  28200
  Copyright terms: Public domain W3C validator