MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnns2 Structured version   Visualization version   GIF version

Theorem elnns2 28269
Description: A positive surreal integer is a non-negative surreal integer greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
elnns2 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))

Proof of Theorem elnns2
StepHypRef Expression
1 elnns 28268 . 2 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
2 nesym 2984 . . . . 5 (𝐴 ≠ 0s ↔ ¬ 0s = 𝐴)
3 n0sge0 28266 . . . . . . . 8 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)
4 0sno 27770 . . . . . . . . 9 0s No
5 n0sno 28252 . . . . . . . . 9 (𝐴 ∈ ℕ0s𝐴 No )
6 sleloe 27693 . . . . . . . . 9 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
74, 5, 6sylancr 587 . . . . . . . 8 (𝐴 ∈ ℕ0s → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
83, 7mpbid 232 . . . . . . 7 (𝐴 ∈ ℕ0s → ( 0s <s 𝐴 ∨ 0s = 𝐴))
98orcomd 871 . . . . . 6 (𝐴 ∈ ℕ0s → ( 0s = 𝐴 ∨ 0s <s 𝐴))
109ord 864 . . . . 5 (𝐴 ∈ ℕ0s → (¬ 0s = 𝐴 → 0s <s 𝐴))
112, 10biimtrid 242 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 ≠ 0s → 0s <s 𝐴))
12 sgt0ne0 27779 . . . 4 ( 0s <s 𝐴𝐴 ≠ 0s )
1311, 12impbid1 225 . . 3 (𝐴 ∈ ℕ0s → (𝐴 ≠ 0s ↔ 0s <s 𝐴))
1413pm5.32i 574 . 2 ((𝐴 ∈ ℕ0s𝐴 ≠ 0s ) ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))
151, 14bitri 275 1 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089   No csur 27578   <s cslt 27579   ≤s csle 27683   0s c0s 27766  0scnn0s 28242  scnns 28243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec2 27892  df-adds 27903  df-n0s 28244  df-nns 28245
This theorem is referenced by:  nnaddscl  28274  nnmulscl  28275
  Copyright terms: Public domain W3C validator