![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnns2 | Structured version Visualization version GIF version |
Description: A positive surreal integer is a non-negative surreal integer greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
elnns2 | âĒ (ðī â âs â (ðī â â0s â§ 0s <s ðī)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnns 28124 | . 2 âĒ (ðī â âs â (ðī â â0s â§ ðī â 0s )) | |
2 | nesym 2989 | . . . . 5 âĒ (ðī â 0s â ÂŽ 0s = ðī) | |
3 | n0sge0 28122 | . . . . . . . 8 âĒ (ðī â â0s â 0s âĪs ðī) | |
4 | 0sno 27675 | . . . . . . . . 9 âĒ 0s â No | |
5 | n0sno 28111 | . . . . . . . . 9 âĒ (ðī â â0s â ðī â No ) | |
6 | sleloe 27603 | . . . . . . . . 9 âĒ (( 0s â No â§ ðī â No ) â ( 0s âĪs ðī â ( 0s <s ðī âĻ 0s = ðī))) | |
7 | 4, 5, 6 | sylancr 586 | . . . . . . . 8 âĒ (ðī â â0s â ( 0s âĪs ðī â ( 0s <s ðī âĻ 0s = ðī))) |
8 | 3, 7 | mpbid 231 | . . . . . . 7 âĒ (ðī â â0s â ( 0s <s ðī âĻ 0s = ðī)) |
9 | 8 | orcomd 868 | . . . . . 6 âĒ (ðī â â0s â ( 0s = ðī âĻ 0s <s ðī)) |
10 | 9 | ord 861 | . . . . 5 âĒ (ðī â â0s â (ÂŽ 0s = ðī â 0s <s ðī)) |
11 | 2, 10 | biimtrid 241 | . . . 4 âĒ (ðī â â0s â (ðī â 0s â 0s <s ðī)) |
12 | sgt0ne0 27683 | . . . 4 âĒ ( 0s <s ðī â ðī â 0s ) | |
13 | 11, 12 | impbid1 224 | . . 3 âĒ (ðī â â0s â (ðī â 0s â 0s <s ðī)) |
14 | 13 | pm5.32i 574 | . 2 âĒ ((ðī â â0s â§ ðī â 0s ) â (ðī â â0s â§ 0s <s ðī)) |
15 | 1, 14 | bitri 275 | 1 âĒ (ðī â âs â (ðī â â0s â§ 0s <s ðī)) |
Colors of variables: wff setvar class |
Syntax hints: ÂŽ wn 3 â wb 205 â§ wa 395 âĻ wo 844 = wceq 1533 â wcel 2098 â wne 2932 class class class wbr 5138 No csur 27489 <s cslt 27490 âĪs csle 27593 0s c0s 27671 â0scnn0s 28101 âscnns 28102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-nadd 8661 df-no 27492 df-slt 27493 df-bday 27494 df-sle 27594 df-sslt 27630 df-scut 27632 df-0s 27673 df-1s 27674 df-made 27690 df-old 27691 df-left 27693 df-right 27694 df-norec2 27782 df-adds 27793 df-n0s 28103 df-nns 28104 |
This theorem is referenced by: nnaddscl 28128 nnmulscl 28129 |
Copyright terms: Public domain | W3C validator |