![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnns2 | Structured version Visualization version GIF version |
Description: A positive surreal integer is a non-negative surreal integer greater than zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
elnns2 | ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnns 28311 | . 2 ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) | |
2 | nesym 2987 | . . . . 5 ⊢ (𝐴 ≠ 0s ↔ ¬ 0s = 𝐴) | |
3 | n0sge0 28309 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) | |
4 | 0sno 27856 | . . . . . . . . 9 ⊢ 0s ∈ No | |
5 | n0sno 28296 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) | |
6 | sleloe 27784 | . . . . . . . . 9 ⊢ (( 0s ∈ No ∧ 𝐴 ∈ No ) → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴))) | |
7 | 4, 5, 6 | sylancr 585 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0s → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴))) |
8 | 3, 7 | mpbid 231 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0s → ( 0s <s 𝐴 ∨ 0s = 𝐴)) |
9 | 8 | orcomd 869 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0s → ( 0s = 𝐴 ∨ 0s <s 𝐴)) |
10 | 9 | ord 862 | . . . . 5 ⊢ (𝐴 ∈ ℕ0s → (¬ 0s = 𝐴 → 0s <s 𝐴)) |
11 | 2, 10 | biimtrid 241 | . . . 4 ⊢ (𝐴 ∈ ℕ0s → (𝐴 ≠ 0s → 0s <s 𝐴)) |
12 | sgt0ne0 27864 | . . . 4 ⊢ ( 0s <s 𝐴 → 𝐴 ≠ 0s ) | |
13 | 11, 12 | impbid1 224 | . . 3 ⊢ (𝐴 ∈ ℕ0s → (𝐴 ≠ 0s ↔ 0s <s 𝐴)) |
14 | 13 | pm5.32i 573 | . 2 ⊢ ((𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s ) ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴)) |
15 | 1, 14 | bitri 274 | 1 ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 0s <s 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5153 No csur 27669 <s cslt 27670 ≤s csle 27774 0s c0s 27852 ℕ0scnn0s 28286 ℕscnns 28287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-ot 4642 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-nadd 8696 df-no 27672 df-slt 27673 df-bday 27674 df-sle 27775 df-sslt 27811 df-scut 27813 df-0s 27854 df-1s 27855 df-made 27871 df-old 27872 df-left 27874 df-right 27875 df-norec2 27963 df-adds 27974 df-n0s 28288 df-nns 28289 |
This theorem is referenced by: nnaddscl 28315 nnmulscl 28316 |
Copyright terms: Public domain | W3C validator |