MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsnd Structured version   Visualization version   GIF version

Theorem elsnd 4609
Description: There is at most one element in a singleton. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypothesis
Ref Expression
elsnd.1 (𝜑𝐴 ∈ {𝐵})
Assertion
Ref Expression
elsnd (𝜑𝐴 = 𝐵)

Proof of Theorem elsnd
StepHypRef Expression
1 elsnd.1 . 2 (𝜑𝐴 ∈ {𝐵})
2 elsni 4608 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
31, 2syl 17 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sn 4592
This theorem is referenced by:  chnccats1  32947  elrgspnsubrunlem2  33205  discsubc  49041
  Copyright terms: Public domain W3C validator