![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsnd | Structured version Visualization version GIF version |
Description: There is at most one element in a singleton. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
Ref | Expression |
---|---|
elsnd.1 | ⊢ (𝜑 → 𝐴 ∈ {𝐵}) |
Ref | Expression |
---|---|
elsnd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsnd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ {𝐵}) | |
2 | elsni 4641 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-sn 4625 |
This theorem is referenced by: elrgspnsubrunlem2 33240 |
Copyright terms: Public domain | W3C validator |