MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsnd Structured version   Visualization version   GIF version

Theorem elsnd 4595
Description: There is at most one element in a singleton. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypothesis
Ref Expression
elsnd.1 (𝜑𝐴 ∈ {𝐵})
Assertion
Ref Expression
elsnd (𝜑𝐴 = 𝐵)

Proof of Theorem elsnd
StepHypRef Expression
1 elsnd.1 . 2 (𝜑𝐴 ∈ {𝐵})
2 elsni 4594 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
31, 2syl 17 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-sn 4578
This theorem is referenced by:  chnccats1  18539  chnccat  18540  ex-chn1  18551  elrgspnsubrunlem2  33258  evlextv  33635  discsubc  49225
  Copyright terms: Public domain W3C validator