| Step | Hyp | Ref
| Expression |
| 1 | | chnccats1.2 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ ( < Chain𝐴)) |
| 2 | 1 | chnwrd 32997 |
. . 3
⊢ (𝜑 → 𝑇 ∈ Word 𝐴) |
| 3 | | chnccats1.1 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 4 | 3 | s1cld 14641 |
. . 3
⊢ (𝜑 → 〈“𝑋”〉 ∈ Word 𝐴) |
| 5 | | ccatcl 14612 |
. . 3
⊢ ((𝑇 ∈ Word 𝐴 ∧ 〈“𝑋”〉 ∈ Word 𝐴) → (𝑇 ++ 〈“𝑋”〉) ∈ Word 𝐴) |
| 6 | 2, 4, 5 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑇 ++ 〈“𝑋”〉) ∈ Word 𝐴) |
| 7 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑇) = (♯‘𝑇)) |
| 8 | 7, 2 | wrdfd 32918 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇:(0..^(♯‘𝑇))⟶𝐴) |
| 9 | 8 | fdmd 6746 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑇 = (0..^(♯‘𝑇))) |
| 10 | 9 | difeq1d 4125 |
. . . . . . . . 9
⊢ (𝜑 → (dom 𝑇 ∖ {0}) = ((0..^(♯‘𝑇)) ∖
{0})) |
| 11 | 10 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ (dom 𝑇 ∖ {0}) ↔ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖
{0}))) |
| 12 | 11 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → 𝑛 ∈ (dom 𝑇 ∖ {0})) |
| 13 | | ischn 32996 |
. . . . . . . . . 10
⊢ (𝑇 ∈ ( < Chain𝐴) ↔ (𝑇 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑇 ∖ {0})(𝑇‘(𝑛 − 1)) < (𝑇‘𝑛))) |
| 14 | 1, 13 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑇 ∖ {0})(𝑇‘(𝑛 − 1)) < (𝑇‘𝑛))) |
| 15 | 14 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ (dom 𝑇 ∖ {0})(𝑇‘(𝑛 − 1)) < (𝑇‘𝑛)) |
| 16 | 15 | r19.21bi 3251 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (dom 𝑇 ∖ {0})) → (𝑇‘(𝑛 − 1)) < (𝑇‘𝑛)) |
| 17 | 12, 16 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → (𝑇‘(𝑛 − 1)) < (𝑇‘𝑛)) |
| 18 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → 𝑇 ∈ Word 𝐴) |
| 19 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → 𝑛 ∈
((0..^(♯‘𝑇))
∖ {0})) |
| 20 | | lencl 14571 |
. . . . . . . . 9
⊢ (𝑇 ∈ Word 𝐴 → (♯‘𝑇) ∈
ℕ0) |
| 21 | 18, 20 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) →
(♯‘𝑇) ∈
ℕ0) |
| 22 | 19, 21 | elfzodif0 32796 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → (𝑛 − 1) ∈
(0..^(♯‘𝑇))) |
| 23 | | ccats1val1 14664 |
. . . . . . 7
⊢ ((𝑇 ∈ Word 𝐴 ∧ (𝑛 − 1) ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) = (𝑇‘(𝑛 − 1))) |
| 24 | 18, 22, 23 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) = (𝑇‘(𝑛 − 1))) |
| 25 | 19 | eldifad 3963 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → 𝑛 ∈
(0..^(♯‘𝑇))) |
| 26 | | ccats1val1 14664 |
. . . . . . 7
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑛 ∈ (0..^(♯‘𝑇))) → ((𝑇 ++ 〈“𝑋”〉)‘𝑛) = (𝑇‘𝑛)) |
| 27 | 18, 25, 26 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → ((𝑇 ++ 〈“𝑋”〉)‘𝑛) = (𝑇‘𝑛)) |
| 28 | 17, 24, 27 | 3brtr4d 5175 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0})) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛)) |
| 29 | 28 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0})) ∧ 𝑛 ∈
((0..^(♯‘𝑇))
∖ {0})) → ((𝑇 ++
〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛)) |
| 30 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) |
| 31 | 30 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ 𝑇 = ∅) → 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) |
| 32 | | noel 4338 |
. . . . . . . 8
⊢ ¬
𝑛 ∈
∅ |
| 33 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑇 = ∅ →
(♯‘𝑇) =
(♯‘∅)) |
| 34 | | hash0 14406 |
. . . . . . . . . . . . . 14
⊢
(♯‘∅) = 0 |
| 35 | 33, 34 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝑇 = ∅ →
(♯‘𝑇) =
0) |
| 36 | 35 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ 𝑇 = ∅) → (♯‘𝑇) = 0) |
| 37 | 36 | sneqd 4638 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ 𝑇 = ∅) → {(♯‘𝑇)} = {0}) |
| 38 | 37 | difeq1d 4125 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ 𝑇 = ∅) → ({(♯‘𝑇)} ∖ {0}) = ({0} ∖
{0})) |
| 39 | | difid 4376 |
. . . . . . . . . 10
⊢ ({0}
∖ {0}) = ∅ |
| 40 | 38, 39 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ 𝑇 = ∅) → ({(♯‘𝑇)} ∖ {0}) =
∅) |
| 41 | 40 | eleq2d 2827 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ 𝑇 = ∅) → (𝑛 ∈ ({(♯‘𝑇)} ∖ {0}) ↔ 𝑛 ∈ ∅)) |
| 42 | 32, 41 | mtbiri 327 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ 𝑇 = ∅) → ¬ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) |
| 43 | 31, 42 | pm2.21dd 195 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ 𝑇 = ∅) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛)) |
| 44 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → (lastS‘𝑇) < 𝑋) |
| 45 | 30 | eldifad 3963 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → 𝑛 ∈ {(♯‘𝑇)}) |
| 46 | 45 | elsnd 32547 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → 𝑛 = (♯‘𝑇)) |
| 47 | 46 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → (𝑛 − 1) = ((♯‘𝑇) − 1)) |
| 48 | 47 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → (𝑛 − 1) = ((♯‘𝑇) − 1)) |
| 49 | 48 | fveq2d 6910 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → (𝑇‘(𝑛 − 1)) = (𝑇‘((♯‘𝑇) − 1))) |
| 50 | 2 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → 𝑇 ∈ Word 𝐴) |
| 51 | 2 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → 𝑇 ∈ Word 𝐴) |
| 52 | 51, 20 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → (♯‘𝑇) ∈
ℕ0) |
| 53 | 46, 30 | eqeltrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → (♯‘𝑇) ∈ ({(♯‘𝑇)} ∖
{0})) |
| 54 | 53 | eldifbd 3964 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → ¬
(♯‘𝑇) ∈
{0}) |
| 55 | 52, 54 | eldifd 3962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → (♯‘𝑇) ∈ (ℕ0
∖ {0})) |
| 56 | | dfn2 12539 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℕ0 ∖ {0}) |
| 57 | 55, 56 | eleqtrrdi 2852 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → (♯‘𝑇) ∈
ℕ) |
| 58 | | fzo0end 13797 |
. . . . . . . . . . . 12
⊢
((♯‘𝑇)
∈ ℕ → ((♯‘𝑇) − 1) ∈
(0..^(♯‘𝑇))) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) →
((♯‘𝑇) −
1) ∈ (0..^(♯‘𝑇))) |
| 60 | 47, 59 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → (𝑛 − 1) ∈ (0..^(♯‘𝑇))) |
| 61 | 60 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → (𝑛 − 1) ∈ (0..^(♯‘𝑇))) |
| 62 | 50, 61, 23 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) = (𝑇‘(𝑛 − 1))) |
| 63 | | lsw 14602 |
. . . . . . . . 9
⊢ (𝑇 ∈ Word 𝐴 → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1))) |
| 64 | 50, 63 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → (lastS‘𝑇) = (𝑇‘((♯‘𝑇) − 1))) |
| 65 | 49, 62, 64 | 3eqtr4d 2787 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) = (lastS‘𝑇)) |
| 66 | 46 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → 𝑛 = (♯‘𝑇)) |
| 67 | 66 | fveq2d 6910 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → ((𝑇 ++ 〈“𝑋”〉)‘𝑛) = ((𝑇 ++ 〈“𝑋”〉)‘(♯‘𝑇))) |
| 68 | 3 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → 𝑋 ∈ 𝐴) |
| 69 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → (♯‘𝑇) = (♯‘𝑇)) |
| 70 | | ccats1val2 14665 |
. . . . . . . . 9
⊢ ((𝑇 ∈ Word 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ (♯‘𝑇) = (♯‘𝑇)) → ((𝑇 ++ 〈“𝑋”〉)‘(♯‘𝑇)) = 𝑋) |
| 71 | 50, 68, 69, 70 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → ((𝑇 ++ 〈“𝑋”〉)‘(♯‘𝑇)) = 𝑋) |
| 72 | 67, 71 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → ((𝑇 ++ 〈“𝑋”〉)‘𝑛) = 𝑋) |
| 73 | 44, 65, 72 | 3brtr4d 5175 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) ∧ (lastS‘𝑇) < 𝑋) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛)) |
| 74 | | chnccats1.3 |
. . . . . . 7
⊢ (𝜑 → (𝑇 = ∅ ∨ (lastS‘𝑇) < 𝑋)) |
| 75 | 74 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → (𝑇 = ∅ ∨ (lastS‘𝑇) < 𝑋)) |
| 76 | 43, 73, 75 | mpjaodan 961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛)) |
| 77 | 76 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0})) ∧ 𝑛 ∈ ({(♯‘𝑇)} ∖ {0})) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛)) |
| 78 | | ccatws1len 14658 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ Word 𝐴 → (♯‘(𝑇 ++ 〈“𝑋”〉)) = ((♯‘𝑇) + 1)) |
| 79 | 2, 78 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(𝑇 ++ 〈“𝑋”〉)) =
((♯‘𝑇) +
1)) |
| 80 | 79 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑇) + 1) = (♯‘(𝑇 ++ 〈“𝑋”〉))) |
| 81 | 80, 6 | wrdfd 32918 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ++ 〈“𝑋”〉):(0..^((♯‘𝑇) + 1))⟶𝐴) |
| 82 | 81 | fdmd 6746 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑇 ++ 〈“𝑋”〉) = (0..^((♯‘𝑇) + 1))) |
| 83 | 2, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑇) ∈
ℕ0) |
| 84 | | nn0uz 12920 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
| 85 | 83, 84 | eleqtrdi 2851 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑇) ∈
(ℤ≥‘0)) |
| 86 | | fzosplitsn 13814 |
. . . . . . . . . . 11
⊢
((♯‘𝑇)
∈ (ℤ≥‘0) → (0..^((♯‘𝑇) + 1)) =
((0..^(♯‘𝑇))
∪ {(♯‘𝑇)})) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0..^((♯‘𝑇) + 1)) =
((0..^(♯‘𝑇))
∪ {(♯‘𝑇)})) |
| 88 | 82, 87 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑇 ++ 〈“𝑋”〉) = ((0..^(♯‘𝑇)) ∪ {(♯‘𝑇)})) |
| 89 | 88 | difeq1d 4125 |
. . . . . . . 8
⊢ (𝜑 → (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0}) =
(((0..^(♯‘𝑇))
∪ {(♯‘𝑇)})
∖ {0})) |
| 90 | | difundir 4291 |
. . . . . . . 8
⊢
(((0..^(♯‘𝑇)) ∪ {(♯‘𝑇)}) ∖ {0}) =
(((0..^(♯‘𝑇))
∖ {0}) ∪ ({(♯‘𝑇)} ∖ {0})) |
| 91 | 89, 90 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝜑 → (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0}) =
(((0..^(♯‘𝑇))
∖ {0}) ∪ ({(♯‘𝑇)} ∖ {0}))) |
| 92 | 91 | eleq2d 2827 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0}) ↔ 𝑛 ∈
(((0..^(♯‘𝑇))
∖ {0}) ∪ ({(♯‘𝑇)} ∖ {0})))) |
| 93 | 92 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0})) → 𝑛 ∈
(((0..^(♯‘𝑇))
∖ {0}) ∪ ({(♯‘𝑇)} ∖ {0}))) |
| 94 | | elun 4153 |
. . . . 5
⊢ (𝑛 ∈
(((0..^(♯‘𝑇))
∖ {0}) ∪ ({(♯‘𝑇)} ∖ {0})) ↔ (𝑛 ∈ ((0..^(♯‘𝑇)) ∖ {0}) ∨ 𝑛 ∈ ({(♯‘𝑇)} ∖
{0}))) |
| 95 | 93, 94 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0})) → (𝑛 ∈
((0..^(♯‘𝑇))
∖ {0}) ∨ 𝑛 ∈
({(♯‘𝑇)}
∖ {0}))) |
| 96 | 29, 77, 95 | mpjaodan 961 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0})) → ((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛)) |
| 97 | 96 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0})((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛)) |
| 98 | | ischn 32996 |
. 2
⊢ ((𝑇 ++ 〈“𝑋”〉) ∈ ( < Chain𝐴) ↔ ((𝑇 ++ 〈“𝑋”〉) ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom (𝑇 ++ 〈“𝑋”〉) ∖ {0})((𝑇 ++ 〈“𝑋”〉)‘(𝑛 − 1)) < ((𝑇 ++ 〈“𝑋”〉)‘𝑛))) |
| 99 | 6, 97, 98 | sylanbrc 583 |
1
⊢ (𝜑 → (𝑇 ++ 〈“𝑋”〉) ∈ ( < Chain𝐴)) |