![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabsneq | Structured version Visualization version GIF version |
Description: Equality of class abstractions restricted to a singleton. (Contributed by AV, 17-May-2025.) |
Ref | Expression |
---|---|
rabsneq | ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ {𝑁} ∣ 𝜓} = {𝑥 ∈ 𝑉 ∣ (𝑥 = 𝑁 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4664 | . . . . . 6 ⊢ (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁) | |
2 | eleq1a 2839 | . . . . . . 7 ⊢ (𝑁 ∈ 𝑉 → (𝑥 = 𝑁 → 𝑥 ∈ 𝑉)) | |
3 | 2 | pm4.71rd 562 | . . . . . 6 ⊢ (𝑁 ∈ 𝑉 → (𝑥 = 𝑁 ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 = 𝑁))) |
4 | 1, 3 | bitrid 283 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → (𝑥 ∈ {𝑁} ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 = 𝑁))) |
5 | 4 | anbi1d 630 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ((𝑥 ∈ {𝑁} ∧ 𝜓) ↔ ((𝑥 ∈ 𝑉 ∧ 𝑥 = 𝑁) ∧ 𝜓))) |
6 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝑥 = 𝑁) ∧ 𝜓) ↔ (𝑥 ∈ 𝑉 ∧ (𝑥 = 𝑁 ∧ 𝜓))) | |
7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (𝑁 ∈ 𝑉 → ((𝑥 ∈ {𝑁} ∧ 𝜓) ↔ (𝑥 ∈ 𝑉 ∧ (𝑥 = 𝑁 ∧ 𝜓)))) |
8 | 7 | abbidv 2811 | . 2 ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∣ (𝑥 ∈ {𝑁} ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝑥 = 𝑁 ∧ 𝜓))}) |
9 | df-rab 3444 | . 2 ⊢ {𝑥 ∈ {𝑁} ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ {𝑁} ∧ 𝜓)} | |
10 | df-rab 3444 | . 2 ⊢ {𝑥 ∈ 𝑉 ∣ (𝑥 = 𝑁 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ (𝑥 = 𝑁 ∧ 𝜓))} | |
11 | 8, 9, 10 | 3eqtr4g 2805 | 1 ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ {𝑁} ∣ 𝜓} = {𝑥 ∈ 𝑉 ∣ (𝑥 = 𝑁 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-sn 4649 |
This theorem is referenced by: dfsclnbgr6 47730 |
Copyright terms: Public domain | W3C validator |