Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discsubc Structured version   Visualization version   GIF version

Theorem discsubc 49053
Description: A discrete category, whose only morphisms are the identity morphisms, is a subcategory. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
discsubc (𝜑𝐽 ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem discsubc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 discsubc.s . . 3 (𝜑𝑆𝐵)
2 eqeq12 2746 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 = 𝑦𝑎 = 𝑏))
3 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
43fveq2d 6826 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝐼𝑥) = (𝐼𝑎))
54sneqd 4589 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → {(𝐼𝑥)} = {(𝐼𝑎)})
62, 5ifbieq1d 4501 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
7 discsubc.j . . . . . . 7 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
8 snex 5375 . . . . . . . 8 {(𝐼𝑎)} ∈ V
9 0ex 5246 . . . . . . . 8 ∅ ∈ V
108, 9ifex 4527 . . . . . . 7 if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ∈ V
116, 7, 10ovmpoa 7504 . . . . . 6 ((𝑎𝑆𝑏𝑆) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
1211adantl 481 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
13 sseq1 3961 . . . . . 6 ({(𝐼𝑎)} = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) → ({(𝐼𝑎)} ⊆ (𝑎(Homf𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏)))
14 sseq1 3961 . . . . . 6 (∅ = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) → (∅ ⊆ (𝑎(Homf𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏)))
15 discsubc.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
16 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
17 discsubc.i . . . . . . . . 9 𝐼 = (Id‘𝐶)
18 discsubc.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
1918ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝐶 ∈ Cat)
201ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑆𝐵)
21 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎𝑆)
2220, 21sseldd 3936 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎𝐵)
2315, 16, 17, 19, 22catidcl 17588 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝐼𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎))
24 eqid 2729 . . . . . . . . . 10 (Homf𝐶) = (Homf𝐶)
2524, 15, 16, 22, 22homfval 17598 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf𝐶)𝑎) = (𝑎(Hom ‘𝐶)𝑎))
26 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎 = 𝑏)
2726oveq2d 7365 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf𝐶)𝑎) = (𝑎(Homf𝐶)𝑏))
2825, 27eqtr3d 2766 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Hom ‘𝐶)𝑎) = (𝑎(Homf𝐶)𝑏))
2923, 28eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝐼𝑎) ∈ (𝑎(Homf𝐶)𝑏))
3029snssd 4760 . . . . . 6 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → {(𝐼𝑎)} ⊆ (𝑎(Homf𝐶)𝑏))
31 0ss 4351 . . . . . . 7 ∅ ⊆ (𝑎(Homf𝐶)𝑏)
3231a1i 11 . . . . . 6 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ ¬ 𝑎 = 𝑏) → ∅ ⊆ (𝑎(Homf𝐶)𝑏))
3313, 14, 30, 32ifbothda 4515 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏))
3412, 33eqsstrd 3970 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))
3534ralrimivva 3172 . . 3 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))
367discsubclem 49052 . . . . 5 𝐽 Fn (𝑆 × 𝑆)
3736a1i 11 . . . 4 (𝜑𝐽 Fn (𝑆 × 𝑆))
3824, 15homffn 17599 . . . . 5 (Homf𝐶) Fn (𝐵 × 𝐵)
3938a1i 11 . . . 4 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
4015fvexi 6836 . . . . 5 𝐵 ∈ V
4140a1i 11 . . . 4 (𝜑𝐵 ∈ V)
4237, 39, 41isssc 17727 . . 3 (𝜑 → (𝐽cat (Homf𝐶) ↔ (𝑆𝐵 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))))
431, 35, 42mpbir2and 713 . 2 (𝜑𝐽cat (Homf𝐶))
44 fvex 6835 . . . . . 6 (𝐼𝑎) ∈ V
4544snid 4614 . . . . 5 (𝐼𝑎) ∈ {(𝐼𝑎)}
46 simpr 484 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎𝑆)
47 equtr2 2027 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → 𝑥 = 𝑦)
4847iftrued 4484 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = {(𝐼𝑥)})
49 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑎) → 𝑥 = 𝑎)
5049fveq2d 6826 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐼𝑥) = (𝐼𝑎))
5150sneqd 4589 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → {(𝐼𝑥)} = {(𝐼𝑎)})
5248, 51eqtrd 2764 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = {(𝐼𝑎)})
5352, 7, 8ovmpoa 7504 . . . . . 6 ((𝑎𝑆𝑎𝑆) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
5446, 46, 53syl2anc 584 . . . . 5 ((𝜑𝑎𝑆) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
5545, 54eleqtrrid 2835 . . . 4 ((𝜑𝑎𝑆) → (𝐼𝑎) ∈ (𝑎𝐽𝑎))
5645a1i 11 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) ∈ {(𝐼𝑎)})
57 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ (𝑎𝐽𝑏))
5846ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎𝑆)
59 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏𝑆)
6058, 59, 11syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
6157, 60eleqtrd 2830 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
6261ne0d 4293 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ≠ ∅)
63 iffalse 4485 . . . . . . . . . . . . . 14 𝑎 = 𝑏 → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) = ∅)
6463necon1ai 2952 . . . . . . . . . . . . 13 (if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ≠ ∅ → 𝑎 = 𝑏)
6562, 64syl 17 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑏)
6665opeq2d 4831 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ⟨𝑎, 𝑎⟩ = ⟨𝑎, 𝑏⟩)
67 simprr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ (𝑏𝐽𝑐))
68 eqeq12 2746 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑏𝑦 = 𝑐) → (𝑥 = 𝑦𝑏 = 𝑐))
69 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑏𝑦 = 𝑐) → 𝑥 = 𝑏)
7069fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑏𝑦 = 𝑐) → (𝐼𝑥) = (𝐼𝑏))
7170sneqd 4589 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑏𝑦 = 𝑐) → {(𝐼𝑥)} = {(𝐼𝑏)})
7268, 71ifbieq1d 4501 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑏𝑦 = 𝑐) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
73 snex 5375 . . . . . . . . . . . . . . . . . 18 {(𝐼𝑏)} ∈ V
7473, 9ifex 4527 . . . . . . . . . . . . . . . . 17 if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ∈ V
7572, 7, 74ovmpoa 7504 . . . . . . . . . . . . . . . 16 ((𝑏𝑆𝑐𝑆) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7675ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7767, 76eleqtrd 2830 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7877ne0d 4293 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ≠ ∅)
79 iffalse 4485 . . . . . . . . . . . . . 14 𝑏 = 𝑐 → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) = ∅)
8079necon1ai 2952 . . . . . . . . . . . . 13 (if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ≠ ∅ → 𝑏 = 𝑐)
8178, 80syl 17 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏 = 𝑐)
8265, 81eqtrd 2764 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑐)
8366, 82oveq12d 7367 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎) = (⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐))
8483eqcomd 2735 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐) = (⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎))
8581iftrued 4484 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) = {(𝐼𝑏)})
8677, 85eleqtrd 2830 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ {(𝐼𝑏)})
8786elsnd 4595 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼𝑏))
8865fveq2d 6826 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) = (𝐼𝑏))
8987, 88eqtr4d 2767 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼𝑎))
9065iftrued 4484 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) = {(𝐼𝑎)})
9161, 90eleqtrd 2830 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ {(𝐼𝑎)})
9291elsnd 4595 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 = (𝐼𝑎))
9384, 89, 92oveq123d 7370 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) = ((𝐼𝑎)(⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎)(𝐼𝑎)))
9418ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝐶 ∈ Cat)
951ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑆𝐵)
9695, 58sseldd 3936 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎𝐵)
97 eqid 2729 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
9815, 16, 17, 94, 96catidcl 17588 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎))
9915, 16, 17, 94, 96, 97, 96, 98catlid 17589 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ((𝐼𝑎)(⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎)(𝐼𝑎)) = (𝐼𝑎))
10093, 99eqtrd 2764 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) = (𝐼𝑎))
10182oveq2d 7365 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = (𝑎𝐽𝑐))
10258, 58, 53syl2anc 584 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
103101, 102eqtr3d 2766 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑐) = {(𝐼𝑎)})
10456, 100, 1033eltr4d 2843 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
105104ralrimivva 3172 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
106105ralrimivva 3172 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
10755, 106jca 511 . . 3 ((𝜑𝑎𝑆) → ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))
108107ralrimiva 3121 . 2 (𝜑 → ∀𝑎𝑆 ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))
10924, 17, 97, 18, 37issubc2 17743 . 2 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑎𝑆 ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))))
11043, 108, 109mpbir2and 713 1 (𝜑𝐽 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  wss 3903  c0 4284  ifcif 4476  {csn 4577  cop 4583   class class class wbr 5092   × cxp 5617   Fn wfn 6477  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Homf chomf 17572  cat cssc 17714  Subcatcsubc 17716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-pm 8756  df-ixp 8825  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-subc 17719
This theorem is referenced by:  iinfconstbaslem  49054
  Copyright terms: Public domain W3C validator