Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discsubc Structured version   Visualization version   GIF version

Theorem discsubc 49046
Description: A discrete category, whose only morphisms are the identity morphisms, is a subcategory. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
discsubc (𝜑𝐽 ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem discsubc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 discsubc.s . . 3 (𝜑𝑆𝐵)
2 eqeq12 2746 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 = 𝑦𝑎 = 𝑏))
3 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
43fveq2d 6844 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝐼𝑥) = (𝐼𝑎))
54sneqd 4597 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → {(𝐼𝑥)} = {(𝐼𝑎)})
62, 5ifbieq1d 4509 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
7 discsubc.j . . . . . . 7 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
8 snex 5386 . . . . . . . 8 {(𝐼𝑎)} ∈ V
9 0ex 5257 . . . . . . . 8 ∅ ∈ V
108, 9ifex 4535 . . . . . . 7 if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ∈ V
116, 7, 10ovmpoa 7524 . . . . . 6 ((𝑎𝑆𝑏𝑆) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
1211adantl 481 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
13 sseq1 3969 . . . . . 6 ({(𝐼𝑎)} = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) → ({(𝐼𝑎)} ⊆ (𝑎(Homf𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏)))
14 sseq1 3969 . . . . . 6 (∅ = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) → (∅ ⊆ (𝑎(Homf𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏)))
15 discsubc.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
16 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
17 discsubc.i . . . . . . . . 9 𝐼 = (Id‘𝐶)
18 discsubc.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
1918ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝐶 ∈ Cat)
201ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑆𝐵)
21 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎𝑆)
2220, 21sseldd 3944 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎𝐵)
2315, 16, 17, 19, 22catidcl 17623 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝐼𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎))
24 eqid 2729 . . . . . . . . . 10 (Homf𝐶) = (Homf𝐶)
2524, 15, 16, 22, 22homfval 17633 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf𝐶)𝑎) = (𝑎(Hom ‘𝐶)𝑎))
26 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎 = 𝑏)
2726oveq2d 7385 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf𝐶)𝑎) = (𝑎(Homf𝐶)𝑏))
2825, 27eqtr3d 2766 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Hom ‘𝐶)𝑎) = (𝑎(Homf𝐶)𝑏))
2923, 28eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝐼𝑎) ∈ (𝑎(Homf𝐶)𝑏))
3029snssd 4769 . . . . . 6 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → {(𝐼𝑎)} ⊆ (𝑎(Homf𝐶)𝑏))
31 0ss 4359 . . . . . . 7 ∅ ⊆ (𝑎(Homf𝐶)𝑏)
3231a1i 11 . . . . . 6 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ ¬ 𝑎 = 𝑏) → ∅ ⊆ (𝑎(Homf𝐶)𝑏))
3313, 14, 30, 32ifbothda 4523 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏))
3412, 33eqsstrd 3978 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))
3534ralrimivva 3178 . . 3 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))
367discsubclem 49045 . . . . 5 𝐽 Fn (𝑆 × 𝑆)
3736a1i 11 . . . 4 (𝜑𝐽 Fn (𝑆 × 𝑆))
3824, 15homffn 17634 . . . . 5 (Homf𝐶) Fn (𝐵 × 𝐵)
3938a1i 11 . . . 4 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
4015fvexi 6854 . . . . 5 𝐵 ∈ V
4140a1i 11 . . . 4 (𝜑𝐵 ∈ V)
4237, 39, 41isssc 17762 . . 3 (𝜑 → (𝐽cat (Homf𝐶) ↔ (𝑆𝐵 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))))
431, 35, 42mpbir2and 713 . 2 (𝜑𝐽cat (Homf𝐶))
44 fvex 6853 . . . . . 6 (𝐼𝑎) ∈ V
4544snid 4622 . . . . 5 (𝐼𝑎) ∈ {(𝐼𝑎)}
46 simpr 484 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎𝑆)
47 equtr2 2027 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → 𝑥 = 𝑦)
4847iftrued 4492 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = {(𝐼𝑥)})
49 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑎) → 𝑥 = 𝑎)
5049fveq2d 6844 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐼𝑥) = (𝐼𝑎))
5150sneqd 4597 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → {(𝐼𝑥)} = {(𝐼𝑎)})
5248, 51eqtrd 2764 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = {(𝐼𝑎)})
5352, 7, 8ovmpoa 7524 . . . . . 6 ((𝑎𝑆𝑎𝑆) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
5446, 46, 53syl2anc 584 . . . . 5 ((𝜑𝑎𝑆) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
5545, 54eleqtrrid 2835 . . . 4 ((𝜑𝑎𝑆) → (𝐼𝑎) ∈ (𝑎𝐽𝑎))
5645a1i 11 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) ∈ {(𝐼𝑎)})
57 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ (𝑎𝐽𝑏))
5846ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎𝑆)
59 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏𝑆)
6058, 59, 11syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
6157, 60eleqtrd 2830 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
6261ne0d 4301 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ≠ ∅)
63 iffalse 4493 . . . . . . . . . . . . . 14 𝑎 = 𝑏 → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) = ∅)
6463necon1ai 2952 . . . . . . . . . . . . 13 (if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ≠ ∅ → 𝑎 = 𝑏)
6562, 64syl 17 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑏)
6665opeq2d 4840 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ⟨𝑎, 𝑎⟩ = ⟨𝑎, 𝑏⟩)
67 simprr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ (𝑏𝐽𝑐))
68 eqeq12 2746 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑏𝑦 = 𝑐) → (𝑥 = 𝑦𝑏 = 𝑐))
69 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑏𝑦 = 𝑐) → 𝑥 = 𝑏)
7069fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑏𝑦 = 𝑐) → (𝐼𝑥) = (𝐼𝑏))
7170sneqd 4597 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑏𝑦 = 𝑐) → {(𝐼𝑥)} = {(𝐼𝑏)})
7268, 71ifbieq1d 4509 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑏𝑦 = 𝑐) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
73 snex 5386 . . . . . . . . . . . . . . . . . 18 {(𝐼𝑏)} ∈ V
7473, 9ifex 4535 . . . . . . . . . . . . . . . . 17 if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ∈ V
7572, 7, 74ovmpoa 7524 . . . . . . . . . . . . . . . 16 ((𝑏𝑆𝑐𝑆) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7675ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7767, 76eleqtrd 2830 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7877ne0d 4301 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ≠ ∅)
79 iffalse 4493 . . . . . . . . . . . . . 14 𝑏 = 𝑐 → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) = ∅)
8079necon1ai 2952 . . . . . . . . . . . . 13 (if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ≠ ∅ → 𝑏 = 𝑐)
8178, 80syl 17 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏 = 𝑐)
8265, 81eqtrd 2764 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑐)
8366, 82oveq12d 7387 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎) = (⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐))
8483eqcomd 2735 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐) = (⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎))
8581iftrued 4492 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) = {(𝐼𝑏)})
8677, 85eleqtrd 2830 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ {(𝐼𝑏)})
8786elsnd 4603 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼𝑏))
8865fveq2d 6844 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) = (𝐼𝑏))
8987, 88eqtr4d 2767 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼𝑎))
9065iftrued 4492 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) = {(𝐼𝑎)})
9161, 90eleqtrd 2830 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ {(𝐼𝑎)})
9291elsnd 4603 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 = (𝐼𝑎))
9384, 89, 92oveq123d 7390 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) = ((𝐼𝑎)(⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎)(𝐼𝑎)))
9418ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝐶 ∈ Cat)
951ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑆𝐵)
9695, 58sseldd 3944 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎𝐵)
97 eqid 2729 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
9815, 16, 17, 94, 96catidcl 17623 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎))
9915, 16, 17, 94, 96, 97, 96, 98catlid 17624 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ((𝐼𝑎)(⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎)(𝐼𝑎)) = (𝐼𝑎))
10093, 99eqtrd 2764 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) = (𝐼𝑎))
10182oveq2d 7385 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = (𝑎𝐽𝑐))
10258, 58, 53syl2anc 584 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
103101, 102eqtr3d 2766 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑐) = {(𝐼𝑎)})
10456, 100, 1033eltr4d 2843 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
105104ralrimivva 3178 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
106105ralrimivva 3178 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
10755, 106jca 511 . . 3 ((𝜑𝑎𝑆) → ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))
108107ralrimiva 3125 . 2 (𝜑 → ∀𝑎𝑆 ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))
10924, 17, 97, 18, 37issubc2 17778 . 2 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑎𝑆 ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))))
11043, 108, 109mpbir2and 713 1 (𝜑𝐽 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  wss 3911  c0 4292  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17605  Idccid 17606  Homf chomf 17607  cat cssc 17749  Subcatcsubc 17751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-pm 8779  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-ssc 17752  df-subc 17754
This theorem is referenced by:  iinfconstbaslem  49047
  Copyright terms: Public domain W3C validator