Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discsubc Structured version   Visualization version   GIF version

Theorem discsubc 48925
Description: A discrete category, whose only morphisms are the identity morphisms, is a subcategory. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
discsubc (𝜑𝐽 ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem discsubc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 discsubc.s . . 3 (𝜑𝑆𝐵)
2 eqeq12 2751 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 = 𝑦𝑎 = 𝑏))
3 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
43fveq2d 6877 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝐼𝑥) = (𝐼𝑎))
54sneqd 4611 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → {(𝐼𝑥)} = {(𝐼𝑎)})
62, 5ifbieq1d 4523 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
7 discsubc.j . . . . . . 7 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
8 snex 5404 . . . . . . . 8 {(𝐼𝑎)} ∈ V
9 0ex 5275 . . . . . . . 8 ∅ ∈ V
108, 9ifex 4549 . . . . . . 7 if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ∈ V
116, 7, 10ovmpoa 7557 . . . . . 6 ((𝑎𝑆𝑏𝑆) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
1211adantl 481 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
13 sseq1 3982 . . . . . 6 ({(𝐼𝑎)} = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) → ({(𝐼𝑎)} ⊆ (𝑎(Homf𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏)))
14 sseq1 3982 . . . . . 6 (∅ = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) → (∅ ⊆ (𝑎(Homf𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏)))
15 discsubc.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
16 eqid 2734 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
17 discsubc.i . . . . . . . . 9 𝐼 = (Id‘𝐶)
18 discsubc.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
1918ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝐶 ∈ Cat)
201ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑆𝐵)
21 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎𝑆)
2220, 21sseldd 3957 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎𝐵)
2315, 16, 17, 19, 22catidcl 17681 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝐼𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎))
24 eqid 2734 . . . . . . . . . 10 (Homf𝐶) = (Homf𝐶)
2524, 15, 16, 22, 22homfval 17691 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf𝐶)𝑎) = (𝑎(Hom ‘𝐶)𝑎))
26 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎 = 𝑏)
2726oveq2d 7416 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf𝐶)𝑎) = (𝑎(Homf𝐶)𝑏))
2825, 27eqtr3d 2771 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Hom ‘𝐶)𝑎) = (𝑎(Homf𝐶)𝑏))
2923, 28eleqtrd 2835 . . . . . . 7 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝐼𝑎) ∈ (𝑎(Homf𝐶)𝑏))
3029snssd 4783 . . . . . 6 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → {(𝐼𝑎)} ⊆ (𝑎(Homf𝐶)𝑏))
31 0ss 4373 . . . . . . 7 ∅ ⊆ (𝑎(Homf𝐶)𝑏)
3231a1i 11 . . . . . 6 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ ¬ 𝑎 = 𝑏) → ∅ ⊆ (𝑎(Homf𝐶)𝑏))
3313, 14, 30, 32ifbothda 4537 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏))
3412, 33eqsstrd 3991 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))
3534ralrimivva 3185 . . 3 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))
367discsubclem 48924 . . . . 5 𝐽 Fn (𝑆 × 𝑆)
3736a1i 11 . . . 4 (𝜑𝐽 Fn (𝑆 × 𝑆))
3824, 15homffn 17692 . . . . 5 (Homf𝐶) Fn (𝐵 × 𝐵)
3938a1i 11 . . . 4 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
4015fvexi 6887 . . . . 5 𝐵 ∈ V
4140a1i 11 . . . 4 (𝜑𝐵 ∈ V)
4237, 39, 41isssc 17820 . . 3 (𝜑 → (𝐽cat (Homf𝐶) ↔ (𝑆𝐵 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))))
431, 35, 42mpbir2and 713 . 2 (𝜑𝐽cat (Homf𝐶))
44 fvex 6886 . . . . . 6 (𝐼𝑎) ∈ V
4544snid 4636 . . . . 5 (𝐼𝑎) ∈ {(𝐼𝑎)}
46 simpr 484 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎𝑆)
47 equtr2 2025 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → 𝑥 = 𝑦)
4847iftrued 4506 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = {(𝐼𝑥)})
49 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑎) → 𝑥 = 𝑎)
5049fveq2d 6877 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐼𝑥) = (𝐼𝑎))
5150sneqd 4611 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → {(𝐼𝑥)} = {(𝐼𝑎)})
5248, 51eqtrd 2769 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = {(𝐼𝑎)})
5352, 7, 8ovmpoa 7557 . . . . . 6 ((𝑎𝑆𝑎𝑆) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
5446, 46, 53syl2anc 584 . . . . 5 ((𝜑𝑎𝑆) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
5545, 54eleqtrrid 2840 . . . 4 ((𝜑𝑎𝑆) → (𝐼𝑎) ∈ (𝑎𝐽𝑎))
5645a1i 11 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) ∈ {(𝐼𝑎)})
57 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ (𝑎𝐽𝑏))
5846ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎𝑆)
59 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏𝑆)
6058, 59, 11syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
6157, 60eleqtrd 2835 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
6261ne0d 4315 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ≠ ∅)
63 iffalse 4507 . . . . . . . . . . . . . 14 𝑎 = 𝑏 → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) = ∅)
6463necon1ai 2958 . . . . . . . . . . . . 13 (if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ≠ ∅ → 𝑎 = 𝑏)
6562, 64syl 17 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑏)
6665opeq2d 4854 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ⟨𝑎, 𝑎⟩ = ⟨𝑎, 𝑏⟩)
67 simprr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ (𝑏𝐽𝑐))
68 eqeq12 2751 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑏𝑦 = 𝑐) → (𝑥 = 𝑦𝑏 = 𝑐))
69 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑏𝑦 = 𝑐) → 𝑥 = 𝑏)
7069fveq2d 6877 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑏𝑦 = 𝑐) → (𝐼𝑥) = (𝐼𝑏))
7170sneqd 4611 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑏𝑦 = 𝑐) → {(𝐼𝑥)} = {(𝐼𝑏)})
7268, 71ifbieq1d 4523 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑏𝑦 = 𝑐) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
73 snex 5404 . . . . . . . . . . . . . . . . . 18 {(𝐼𝑏)} ∈ V
7473, 9ifex 4549 . . . . . . . . . . . . . . . . 17 if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ∈ V
7572, 7, 74ovmpoa 7557 . . . . . . . . . . . . . . . 16 ((𝑏𝑆𝑐𝑆) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7675ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7767, 76eleqtrd 2835 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7877ne0d 4315 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ≠ ∅)
79 iffalse 4507 . . . . . . . . . . . . . 14 𝑏 = 𝑐 → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) = ∅)
8079necon1ai 2958 . . . . . . . . . . . . 13 (if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ≠ ∅ → 𝑏 = 𝑐)
8178, 80syl 17 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏 = 𝑐)
8265, 81eqtrd 2769 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑐)
8366, 82oveq12d 7418 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎) = (⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐))
8483eqcomd 2740 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐) = (⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎))
8581iftrued 4506 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) = {(𝐼𝑏)})
8677, 85eleqtrd 2835 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ {(𝐼𝑏)})
8786elsnd 4617 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼𝑏))
8865fveq2d 6877 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) = (𝐼𝑏))
8987, 88eqtr4d 2772 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼𝑎))
9065iftrued 4506 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) = {(𝐼𝑎)})
9161, 90eleqtrd 2835 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ {(𝐼𝑎)})
9291elsnd 4617 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 = (𝐼𝑎))
9384, 89, 92oveq123d 7421 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) = ((𝐼𝑎)(⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎)(𝐼𝑎)))
9418ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝐶 ∈ Cat)
951ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑆𝐵)
9695, 58sseldd 3957 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎𝐵)
97 eqid 2734 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
9815, 16, 17, 94, 96catidcl 17681 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎))
9915, 16, 17, 94, 96, 97, 96, 98catlid 17682 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ((𝐼𝑎)(⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎)(𝐼𝑎)) = (𝐼𝑎))
10093, 99eqtrd 2769 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) = (𝐼𝑎))
10182oveq2d 7416 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = (𝑎𝐽𝑐))
10258, 58, 53syl2anc 584 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
103101, 102eqtr3d 2771 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑐) = {(𝐼𝑎)})
10456, 100, 1033eltr4d 2848 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
105104ralrimivva 3185 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
106105ralrimivva 3185 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
10755, 106jca 511 . . 3 ((𝜑𝑎𝑆) → ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))
108107ralrimiva 3130 . 2 (𝜑 → ∀𝑎𝑆 ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))
10924, 17, 97, 18, 37issubc2 17836 . 2 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑎𝑆 ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))))
11043, 108, 109mpbir2and 713 1 (𝜑𝐽 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  Vcvv 3457  wss 3924  c0 4306  ifcif 4498  {csn 4599  cop 4605   class class class wbr 5117   × cxp 5650   Fn wfn 6523  cfv 6528  (class class class)co 7400  cmpo 7402  Basecbs 17215  Hom chom 17269  compcco 17270  Catccat 17663  Idccid 17664  Homf chomf 17665  cat cssc 17807  Subcatcsubc 17809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-pm 8838  df-ixp 8907  df-cat 17667  df-cid 17668  df-homf 17669  df-ssc 17810  df-subc 17812
This theorem is referenced by:  iinfconstbaslem  48926
  Copyright terms: Public domain W3C validator