| Step | Hyp | Ref
| Expression |
| 1 | | discsubc.s |
. . 3
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 2 | | eqeq12 2751 |
. . . . . . . 8
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝑥 = 𝑦 ↔ 𝑎 = 𝑏)) |
| 3 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝑥 = 𝑎) |
| 4 | 3 | fveq2d 6877 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝐼‘𝑥) = (𝐼‘𝑎)) |
| 5 | 4 | sneqd 4611 |
. . . . . . . 8
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → {(𝐼‘𝑥)} = {(𝐼‘𝑎)}) |
| 6 | 2, 5 | ifbieq1d 4523 |
. . . . . . 7
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) = if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅)) |
| 7 | | discsubc.j |
. . . . . . 7
⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| 8 | | snex 5404 |
. . . . . . . 8
⊢ {(𝐼‘𝑎)} ∈ V |
| 9 | | 0ex 5275 |
. . . . . . . 8
⊢ ∅
∈ V |
| 10 | 8, 9 | ifex 4549 |
. . . . . . 7
⊢ if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) ∈ V |
| 11 | 6, 7, 10 | ovmpoa 7557 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅)) |
| 12 | 11 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅)) |
| 13 | | sseq1 3982 |
. . . . . 6
⊢ ({(𝐼‘𝑎)} = if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) → ({(𝐼‘𝑎)} ⊆ (𝑎(Homf ‘𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) ⊆ (𝑎(Homf ‘𝐶)𝑏))) |
| 14 | | sseq1 3982 |
. . . . . 6
⊢ (∅
= if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) → (∅ ⊆ (𝑎(Homf
‘𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) ⊆ (𝑎(Homf ‘𝐶)𝑏))) |
| 15 | | discsubc.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐶) |
| 16 | | eqid 2734 |
. . . . . . . . 9
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 17 | | discsubc.i |
. . . . . . . . 9
⊢ 𝐼 = (Id‘𝐶) |
| 18 | | discsubc.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 19 | 18 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → 𝐶 ∈ Cat) |
| 20 | 1 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → 𝑆 ⊆ 𝐵) |
| 21 | | simplrl 776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → 𝑎 ∈ 𝑆) |
| 22 | 20, 21 | sseldd 3957 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → 𝑎 ∈ 𝐵) |
| 23 | 15, 16, 17, 19, 22 | catidcl 17681 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → (𝐼‘𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎)) |
| 24 | | eqid 2734 |
. . . . . . . . . 10
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
| 25 | 24, 15, 16, 22, 22 | homfval 17691 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf ‘𝐶)𝑎) = (𝑎(Hom ‘𝐶)𝑎)) |
| 26 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → 𝑎 = 𝑏) |
| 27 | 26 | oveq2d 7416 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf ‘𝐶)𝑎) = (𝑎(Homf ‘𝐶)𝑏)) |
| 28 | 25, 27 | eqtr3d 2771 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Hom ‘𝐶)𝑎) = (𝑎(Homf ‘𝐶)𝑏)) |
| 29 | 23, 28 | eleqtrd 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → (𝐼‘𝑎) ∈ (𝑎(Homf ‘𝐶)𝑏)) |
| 30 | 29 | snssd 4783 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ 𝑎 = 𝑏) → {(𝐼‘𝑎)} ⊆ (𝑎(Homf ‘𝐶)𝑏)) |
| 31 | | 0ss 4373 |
. . . . . . 7
⊢ ∅
⊆ (𝑎(Homf ‘𝐶)𝑏) |
| 32 | 31 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) ∧ ¬ 𝑎 = 𝑏) → ∅ ⊆ (𝑎(Homf ‘𝐶)𝑏)) |
| 33 | 13, 14, 30, 32 | ifbothda 4537 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) ⊆ (𝑎(Homf ‘𝐶)𝑏)) |
| 34 | 12, 33 | eqsstrd 3991 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎𝐽𝑏) ⊆ (𝑎(Homf ‘𝐶)𝑏)) |
| 35 | 34 | ralrimivva 3185 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf ‘𝐶)𝑏)) |
| 36 | 7 | discsubclem 48924 |
. . . . 5
⊢ 𝐽 Fn (𝑆 × 𝑆) |
| 37 | 36 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| 38 | 24, 15 | homffn 17692 |
. . . . 5
⊢
(Homf ‘𝐶) Fn (𝐵 × 𝐵) |
| 39 | 38 | a1i 11 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) Fn (𝐵 × 𝐵)) |
| 40 | 15 | fvexi 6887 |
. . . . 5
⊢ 𝐵 ∈ V |
| 41 | 40 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ V) |
| 42 | 37, 39, 41 | isssc 17820 |
. . 3
⊢ (𝜑 → (𝐽 ⊆cat
(Homf ‘𝐶) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf ‘𝐶)𝑏)))) |
| 43 | 1, 35, 42 | mpbir2and 713 |
. 2
⊢ (𝜑 → 𝐽 ⊆cat
(Homf ‘𝐶)) |
| 44 | | fvex 6886 |
. . . . . 6
⊢ (𝐼‘𝑎) ∈ V |
| 45 | 44 | snid 4636 |
. . . . 5
⊢ (𝐼‘𝑎) ∈ {(𝐼‘𝑎)} |
| 46 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
| 47 | | equtr2 2025 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → 𝑥 = 𝑦) |
| 48 | 47 | iftrued 4506 |
. . . . . . . 8
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) = {(𝐼‘𝑥)}) |
| 49 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → 𝑥 = 𝑎) |
| 50 | 49 | fveq2d 6877 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → (𝐼‘𝑥) = (𝐼‘𝑎)) |
| 51 | 50 | sneqd 4611 |
. . . . . . . 8
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → {(𝐼‘𝑥)} = {(𝐼‘𝑎)}) |
| 52 | 48, 51 | eqtrd 2769 |
. . . . . . 7
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) = {(𝐼‘𝑎)}) |
| 53 | 52, 7, 8 | ovmpoa 7557 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆) → (𝑎𝐽𝑎) = {(𝐼‘𝑎)}) |
| 54 | 46, 46, 53 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑎𝐽𝑎) = {(𝐼‘𝑎)}) |
| 55 | 45, 54 | eleqtrrid 2840 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝐼‘𝑎) ∈ (𝑎𝐽𝑎)) |
| 56 | 45 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼‘𝑎) ∈ {(𝐼‘𝑎)}) |
| 57 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ (𝑎𝐽𝑏)) |
| 58 | 46 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 ∈ 𝑆) |
| 59 | | simplrl 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏 ∈ 𝑆) |
| 60 | 58, 59, 11 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅)) |
| 61 | 57, 60 | eleqtrd 2835 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅)) |
| 62 | 61 | ne0d 4315 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) ≠ ∅) |
| 63 | | iffalse 4507 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑎 = 𝑏 → if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) = ∅) |
| 64 | 63 | necon1ai 2958 |
. . . . . . . . . . . . 13
⊢ (if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) ≠ ∅ → 𝑎 = 𝑏) |
| 65 | 62, 64 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑏) |
| 66 | 65 | opeq2d 4854 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 〈𝑎, 𝑎〉 = 〈𝑎, 𝑏〉) |
| 67 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ (𝑏𝐽𝑐)) |
| 68 | | eqeq12 2751 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑐) → (𝑥 = 𝑦 ↔ 𝑏 = 𝑐)) |
| 69 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑐) → 𝑥 = 𝑏) |
| 70 | 69 | fveq2d 6877 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑐) → (𝐼‘𝑥) = (𝐼‘𝑏)) |
| 71 | 70 | sneqd 4611 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑐) → {(𝐼‘𝑥)} = {(𝐼‘𝑏)}) |
| 72 | 68, 71 | ifbieq1d 4523 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = 𝑐) → if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) = if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅)) |
| 73 | | snex 5404 |
. . . . . . . . . . . . . . . . . 18
⊢ {(𝐼‘𝑏)} ∈ V |
| 74 | 73, 9 | ifex 4549 |
. . . . . . . . . . . . . . . . 17
⊢ if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅) ∈ V |
| 75 | 72, 7, 74 | ovmpoa 7557 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅)) |
| 76 | 75 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅)) |
| 77 | 67, 76 | eleqtrd 2835 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅)) |
| 78 | 77 | ne0d 4315 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅) ≠ ∅) |
| 79 | | iffalse 4507 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑏 = 𝑐 → if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅) = ∅) |
| 80 | 79 | necon1ai 2958 |
. . . . . . . . . . . . 13
⊢ (if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅) ≠ ∅ → 𝑏 = 𝑐) |
| 81 | 78, 80 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏 = 𝑐) |
| 82 | 65, 81 | eqtrd 2769 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑐) |
| 83 | 66, 82 | oveq12d 7418 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (〈𝑎, 𝑎〉(comp‘𝐶)𝑎) = (〈𝑎, 𝑏〉(comp‘𝐶)𝑐)) |
| 84 | 83 | eqcomd 2740 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (〈𝑎, 𝑏〉(comp‘𝐶)𝑐) = (〈𝑎, 𝑎〉(comp‘𝐶)𝑎)) |
| 85 | 81 | iftrued 4506 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼‘𝑏)}, ∅) = {(𝐼‘𝑏)}) |
| 86 | 77, 85 | eleqtrd 2835 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ {(𝐼‘𝑏)}) |
| 87 | 86 | elsnd 4617 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼‘𝑏)) |
| 88 | 65 | fveq2d 6877 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼‘𝑎) = (𝐼‘𝑏)) |
| 89 | 87, 88 | eqtr4d 2772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼‘𝑎)) |
| 90 | 65 | iftrued 4506 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼‘𝑎)}, ∅) = {(𝐼‘𝑎)}) |
| 91 | 61, 90 | eleqtrd 2835 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ {(𝐼‘𝑎)}) |
| 92 | 91 | elsnd 4617 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 = (𝐼‘𝑎)) |
| 93 | 84, 89, 92 | oveq123d 7421 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(〈𝑎, 𝑏〉(comp‘𝐶)𝑐)𝑓) = ((𝐼‘𝑎)(〈𝑎, 𝑎〉(comp‘𝐶)𝑎)(𝐼‘𝑎))) |
| 94 | 18 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝐶 ∈ Cat) |
| 95 | 1 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑆 ⊆ 𝐵) |
| 96 | 95, 58 | sseldd 3957 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 ∈ 𝐵) |
| 97 | | eqid 2734 |
. . . . . . . . 9
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 98 | 15, 16, 17, 94, 96 | catidcl 17681 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼‘𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎)) |
| 99 | 15, 16, 17, 94, 96, 97, 96, 98 | catlid 17682 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ((𝐼‘𝑎)(〈𝑎, 𝑎〉(comp‘𝐶)𝑎)(𝐼‘𝑎)) = (𝐼‘𝑎)) |
| 100 | 93, 99 | eqtrd 2769 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(〈𝑎, 𝑏〉(comp‘𝐶)𝑐)𝑓) = (𝐼‘𝑎)) |
| 101 | 82 | oveq2d 7416 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = (𝑎𝐽𝑐)) |
| 102 | 58, 58, 53 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = {(𝐼‘𝑎)}) |
| 103 | 101, 102 | eqtr3d 2771 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑐) = {(𝐼‘𝑎)}) |
| 104 | 56, 100, 103 | 3eltr4d 2848 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(〈𝑎, 𝑏〉(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)) |
| 105 | 104 | ralrimivva 3185 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆)) → ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)) |
| 106 | 105 | ralrimivva 3185 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ∀𝑏 ∈ 𝑆 ∀𝑐 ∈ 𝑆 ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)) |
| 107 | 55, 106 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((𝐼‘𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏 ∈ 𝑆 ∀𝑐 ∈ 𝑆 ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))) |
| 108 | 107 | ralrimiva 3130 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 ((𝐼‘𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏 ∈ 𝑆 ∀𝑐 ∈ 𝑆 ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))) |
| 109 | 24, 17, 97, 18, 37 | issubc2 17836 |
. 2
⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat
(Homf ‘𝐶) ∧ ∀𝑎 ∈ 𝑆 ((𝐼‘𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏 ∈ 𝑆 ∀𝑐 ∈ 𝑆 ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(〈𝑎, 𝑏〉(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))))) |
| 110 | 43, 108, 109 | mpbir2and 713 |
1
⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |