Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discsubc Structured version   Visualization version   GIF version

Theorem discsubc 49043
Description: A discrete category, whose only morphisms are the identity morphisms, is a subcategory. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
discsubc (𝜑𝐽 ∈ (Subcat‘𝐶))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem discsubc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 discsubc.s . . 3 (𝜑𝑆𝐵)
2 eqeq12 2747 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 = 𝑦𝑎 = 𝑏))
3 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
43fveq2d 6864 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝐼𝑥) = (𝐼𝑎))
54sneqd 4603 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → {(𝐼𝑥)} = {(𝐼𝑎)})
62, 5ifbieq1d 4515 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
7 discsubc.j . . . . . . 7 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
8 snex 5393 . . . . . . . 8 {(𝐼𝑎)} ∈ V
9 0ex 5264 . . . . . . . 8 ∅ ∈ V
108, 9ifex 4541 . . . . . . 7 if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ∈ V
116, 7, 10ovmpoa 7546 . . . . . 6 ((𝑎𝑆𝑏𝑆) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
1211adantl 481 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
13 sseq1 3974 . . . . . 6 ({(𝐼𝑎)} = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) → ({(𝐼𝑎)} ⊆ (𝑎(Homf𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏)))
14 sseq1 3974 . . . . . 6 (∅ = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) → (∅ ⊆ (𝑎(Homf𝐶)𝑏) ↔ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏)))
15 discsubc.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
16 eqid 2730 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
17 discsubc.i . . . . . . . . 9 𝐼 = (Id‘𝐶)
18 discsubc.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
1918ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝐶 ∈ Cat)
201ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑆𝐵)
21 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎𝑆)
2220, 21sseldd 3949 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎𝐵)
2315, 16, 17, 19, 22catidcl 17649 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝐼𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎))
24 eqid 2730 . . . . . . . . . 10 (Homf𝐶) = (Homf𝐶)
2524, 15, 16, 22, 22homfval 17659 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf𝐶)𝑎) = (𝑎(Hom ‘𝐶)𝑎))
26 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → 𝑎 = 𝑏)
2726oveq2d 7405 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Homf𝐶)𝑎) = (𝑎(Homf𝐶)𝑏))
2825, 27eqtr3d 2767 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝑎(Hom ‘𝐶)𝑎) = (𝑎(Homf𝐶)𝑏))
2923, 28eleqtrd 2831 . . . . . . 7 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → (𝐼𝑎) ∈ (𝑎(Homf𝐶)𝑏))
3029snssd 4775 . . . . . 6 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ 𝑎 = 𝑏) → {(𝐼𝑎)} ⊆ (𝑎(Homf𝐶)𝑏))
31 0ss 4365 . . . . . . 7 ∅ ⊆ (𝑎(Homf𝐶)𝑏)
3231a1i 11 . . . . . 6 (((𝜑 ∧ (𝑎𝑆𝑏𝑆)) ∧ ¬ 𝑎 = 𝑏) → ∅ ⊆ (𝑎(Homf𝐶)𝑏))
3313, 14, 30, 32ifbothda 4529 . . . . 5 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ⊆ (𝑎(Homf𝐶)𝑏))
3412, 33eqsstrd 3983 . . . 4 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))
3534ralrimivva 3181 . . 3 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))
367discsubclem 49042 . . . . 5 𝐽 Fn (𝑆 × 𝑆)
3736a1i 11 . . . 4 (𝜑𝐽 Fn (𝑆 × 𝑆))
3824, 15homffn 17660 . . . . 5 (Homf𝐶) Fn (𝐵 × 𝐵)
3938a1i 11 . . . 4 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
4015fvexi 6874 . . . . 5 𝐵 ∈ V
4140a1i 11 . . . 4 (𝜑𝐵 ∈ V)
4237, 39, 41isssc 17788 . . 3 (𝜑 → (𝐽cat (Homf𝐶) ↔ (𝑆𝐵 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝐽𝑏) ⊆ (𝑎(Homf𝐶)𝑏))))
431, 35, 42mpbir2and 713 . 2 (𝜑𝐽cat (Homf𝐶))
44 fvex 6873 . . . . . 6 (𝐼𝑎) ∈ V
4544snid 4628 . . . . 5 (𝐼𝑎) ∈ {(𝐼𝑎)}
46 simpr 484 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎𝑆)
47 equtr2 2027 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → 𝑥 = 𝑦)
4847iftrued 4498 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = {(𝐼𝑥)})
49 simpl 482 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑎) → 𝑥 = 𝑎)
5049fveq2d 6864 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐼𝑥) = (𝐼𝑎))
5150sneqd 4603 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → {(𝐼𝑥)} = {(𝐼𝑎)})
5248, 51eqtrd 2765 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑎) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = {(𝐼𝑎)})
5352, 7, 8ovmpoa 7546 . . . . . 6 ((𝑎𝑆𝑎𝑆) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
5446, 46, 53syl2anc 584 . . . . 5 ((𝜑𝑎𝑆) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
5545, 54eleqtrrid 2836 . . . 4 ((𝜑𝑎𝑆) → (𝐼𝑎) ∈ (𝑎𝐽𝑎))
5645a1i 11 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) ∈ {(𝐼𝑎)})
57 simprl 770 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ (𝑎𝐽𝑏))
5846ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎𝑆)
59 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏𝑆)
6058, 59, 11syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑏) = if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
6157, 60eleqtrd 2831 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅))
6261ne0d 4307 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ≠ ∅)
63 iffalse 4499 . . . . . . . . . . . . . 14 𝑎 = 𝑏 → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) = ∅)
6463necon1ai 2953 . . . . . . . . . . . . 13 (if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) ≠ ∅ → 𝑎 = 𝑏)
6562, 64syl 17 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑏)
6665opeq2d 4846 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ⟨𝑎, 𝑎⟩ = ⟨𝑎, 𝑏⟩)
67 simprr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ (𝑏𝐽𝑐))
68 eqeq12 2747 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑏𝑦 = 𝑐) → (𝑥 = 𝑦𝑏 = 𝑐))
69 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑏𝑦 = 𝑐) → 𝑥 = 𝑏)
7069fveq2d 6864 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑏𝑦 = 𝑐) → (𝐼𝑥) = (𝐼𝑏))
7170sneqd 4603 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑏𝑦 = 𝑐) → {(𝐼𝑥)} = {(𝐼𝑏)})
7268, 71ifbieq1d 4515 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑏𝑦 = 𝑐) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
73 snex 5393 . . . . . . . . . . . . . . . . . 18 {(𝐼𝑏)} ∈ V
7473, 9ifex 4541 . . . . . . . . . . . . . . . . 17 if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ∈ V
7572, 7, 74ovmpoa 7546 . . . . . . . . . . . . . . . 16 ((𝑏𝑆𝑐𝑆) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7675ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑏𝐽𝑐) = if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7767, 76eleqtrd 2831 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅))
7877ne0d 4307 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ≠ ∅)
79 iffalse 4499 . . . . . . . . . . . . . 14 𝑏 = 𝑐 → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) = ∅)
8079necon1ai 2953 . . . . . . . . . . . . 13 (if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) ≠ ∅ → 𝑏 = 𝑐)
8178, 80syl 17 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑏 = 𝑐)
8265, 81eqtrd 2765 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎 = 𝑐)
8366, 82oveq12d 7407 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎) = (⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐))
8483eqcomd 2736 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐) = (⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎))
8581iftrued 4498 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑏 = 𝑐, {(𝐼𝑏)}, ∅) = {(𝐼𝑏)})
8677, 85eleqtrd 2831 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 ∈ {(𝐼𝑏)})
8786elsnd 4609 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼𝑏))
8865fveq2d 6864 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) = (𝐼𝑏))
8987, 88eqtr4d 2768 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑔 = (𝐼𝑎))
9065iftrued 4498 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → if(𝑎 = 𝑏, {(𝐼𝑎)}, ∅) = {(𝐼𝑎)})
9161, 90eleqtrd 2831 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 ∈ {(𝐼𝑎)})
9291elsnd 4609 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑓 = (𝐼𝑎))
9384, 89, 92oveq123d 7410 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) = ((𝐼𝑎)(⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎)(𝐼𝑎)))
9418ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝐶 ∈ Cat)
951ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑆𝐵)
9695, 58sseldd 3949 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → 𝑎𝐵)
97 eqid 2730 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
9815, 16, 17, 94, 96catidcl 17649 . . . . . . . . 9 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝐼𝑎) ∈ (𝑎(Hom ‘𝐶)𝑎))
9915, 16, 17, 94, 96, 97, 96, 98catlid 17650 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → ((𝐼𝑎)(⟨𝑎, 𝑎⟩(comp‘𝐶)𝑎)(𝐼𝑎)) = (𝐼𝑎))
10093, 99eqtrd 2765 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) = (𝐼𝑎))
10182oveq2d 7405 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = (𝑎𝐽𝑐))
10258, 58, 53syl2anc 584 . . . . . . . 8 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑎) = {(𝐼𝑎)})
103101, 102eqtr3d 2767 . . . . . . 7 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑎𝐽𝑐) = {(𝐼𝑎)})
10456, 100, 1033eltr4d 2844 . . . . . 6 ((((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) ∧ (𝑓 ∈ (𝑎𝐽𝑏) ∧ 𝑔 ∈ (𝑏𝐽𝑐))) → (𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
105104ralrimivva 3181 . . . . 5 (((𝜑𝑎𝑆) ∧ (𝑏𝑆𝑐𝑆)) → ∀𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
106105ralrimivva 3181 . . . 4 ((𝜑𝑎𝑆) → ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐))
10755, 106jca 511 . . 3 ((𝜑𝑎𝑆) → ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))
108107ralrimiva 3126 . 2 (𝜑 → ∀𝑎𝑆 ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))
10924, 17, 97, 18, 37issubc2 17804 . 2 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑎𝑆 ((𝐼𝑎) ∈ (𝑎𝐽𝑎) ∧ ∀𝑏𝑆𝑐𝑆𝑓 ∈ (𝑎𝐽𝑏)∀𝑔 ∈ (𝑏𝐽𝑐)(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐶)𝑐)𝑓) ∈ (𝑎𝐽𝑐)))))
11043, 108, 109mpbir2and 713 1 (𝜑𝐽 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  wss 3916  c0 4298  ifcif 4490  {csn 4591  cop 4597   class class class wbr 5109   × cxp 5638   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Idccid 17632  Homf chomf 17633  cat cssc 17775  Subcatcsubc 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-pm 8804  df-ixp 8873  df-cat 17635  df-cid 17636  df-homf 17637  df-ssc 17778  df-subc 17780
This theorem is referenced by:  iinfconstbaslem  49044
  Copyright terms: Public domain W3C validator