Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem2 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem2 33205
Description: Lemma for elrgspnsubrun 33206, second direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem2.x (𝜑𝑋𝐵)
elrgspnsubrunlem2.1 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
elrgspnsubrunlem2.2 (𝜑𝐺 finSupp 0)
elrgspnsubrunlem2.3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
Assertion
Ref Expression
elrgspnsubrunlem2 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Distinct variable groups:   0 ,𝑓,𝑝,𝑤   · ,𝑓,𝑝,𝑤   𝐵,𝑓,𝑤   𝑓,𝐸,𝑝,𝑤   𝑓,𝐹,𝑝,𝑤   𝑓,𝐺,𝑝,𝑤   𝑅,𝑓,𝑝,𝑤   𝑋,𝑝   𝜑,𝑓,𝑝,𝑤
Allowed substitution hints:   𝐵(𝑝)   𝑁(𝑤,𝑓,𝑝)   𝑋(𝑤,𝑓)

Proof of Theorem elrgspnsubrunlem2
Dummy variables 𝑞 𝑣 𝑦 𝑎 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspnsubrun.e . . . . 5 (𝜑𝐸 ∈ (SubRing‘𝑅))
21ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐸 ∈ (SubRing‘𝑅))
3 elrgspnsubrun.f . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝑅))
43ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐹 ∈ (SubRing‘𝑅))
5 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
6 elrgspnsubrun.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
76crngringd 20161 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
87ringabld 20198 . . . . . . 7 (𝜑𝑅 ∈ Abel)
98ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝑅 ∈ Abel)
10 vex 3454 . . . . . . . . 9 𝑞 ∈ V
1110cnvex 7903 . . . . . . . 8 𝑞 ∈ V
1211imaex 7892 . . . . . . 7 (𝑞 “ (𝐸 × {𝑓})) ∈ V
1312a1i 11 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
14 subrgsubg 20492 . . . . . . . 8 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubGrp‘𝑅))
151, 14syl 17 . . . . . . 7 (𝜑𝐸 ∈ (SubGrp‘𝑅))
1615ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸 ∈ (SubGrp‘𝑅))
17 elrgspnsubrun.b . . . . . . . 8 𝐵 = (Base‘𝑅)
18 eqid 2730 . . . . . . . 8 (.g𝑅) = (.g𝑅)
196crnggrpd 20162 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2019ad4antr 732 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
211, 3xpexd 7729 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 × 𝐹) ∈ V)
221, 3unexd 7732 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ∈ V)
23 wrdexg 14495 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
2422, 23syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ∈ V)
2521, 24elmapd 8815 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹)) ↔ 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹)))
2625biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
2726ffund 6694 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Fun 𝑞)
2827ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Fun 𝑞)
29 fvimacnvi 7026 . . . . . . . . . 10 ((Fun 𝑞𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
3028, 29sylancom 588 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
31 xp1st 8002 . . . . . . . . 9 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3230, 31syl 17 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3316adantr 480 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸 ∈ (SubGrp‘𝑅))
34 elrgspnsubrunlem2.1 . . . . . . . . . 10 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
3534ad4antr 732 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
36 cnvimass 6055 . . . . . . . . . . 11 (𝑞 “ (𝐸 × {𝑓})) ⊆ dom 𝑞
3726fdmd 6700 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → dom 𝑞 = Word (𝐸𝐹))
3837ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → dom 𝑞 = Word (𝐸𝐹))
3936, 38sseqtrid 3991 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
4039sselda 3948 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
4135, 40ffvelcdmd 7059 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
4217, 18, 20, 32, 33, 41subgmulgcld 32990 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐸)
4342fmpttd 7089 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))):(𝑞 “ (𝐸 × {𝑓}))⟶𝐸)
4434feqmptd 6931 . . . . . . . . . 10 (𝜑𝐺 = (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)))
45 elrgspnsubrunlem2.2 . . . . . . . . . 10 (𝜑𝐺 finSupp 0)
4644, 45eqbrtrrd 5133 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
48 0zd 12547 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
4947, 39, 48fmptssfisupp 9351 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
5017subrgss 20487 . . . . . . . . . . 11 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
511, 50syl 17 . . . . . . . . . 10 (𝜑𝐸𝐵)
5251ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸𝐵)
5352sselda 3948 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → 𝑦𝐵)
5417, 5, 18mulg0 19012 . . . . . . . 8 (𝑦𝐵 → (0(.g𝑅)𝑦) = 0 )
5553, 54syl 17 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → (0(.g𝑅)𝑦) = 0 )
565fvexi 6874 . . . . . . . 8 0 ∈ V
5756a1i 11 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ V)
5849, 55, 41, 32, 57fsuppssov1 9341 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
595, 9, 13, 16, 43, 58gsumsubgcl 19856 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ 𝐸)
6059fmpttd 7089 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))):𝐹𝐸)
612, 4, 60elmapdd 8816 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) ∈ (𝐸m 𝐹))
62 breq1 5112 . . . . 5 (𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
6362adantl 481 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
64 nfv 1914 . . . . . . . 8 𝑓((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
65 nfmpt1 5208 . . . . . . . . 9 𝑓(𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6665nfeq2 2910 . . . . . . . 8 𝑓 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6764, 66nfan 1899 . . . . . . 7 𝑓(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
68 simpr 484 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
69 ovexd 7424 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ V)
7068, 69fvmpt2d 6983 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑝𝑓) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
7170oveq1d 7404 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → ((𝑝𝑓) · 𝑓) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
7267, 71mpteq2da 5201 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)) = (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))
7372oveq2d 7405 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
7473eqeq2d 2741 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
7563, 74anbi12d 632 . . 3 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → ((𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) ↔ ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))))
7656a1i 11 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 0 ∈ V)
7760ffund 6694 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
7827adantr 480 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun 𝑞)
7945fsuppimpd 9326 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ∈ Fin)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝐺 supp 0) ∈ Fin)
81 imafi 9270 . . . . . . . 8 ((Fun 𝑞 ∧ (𝐺 supp 0) ∈ Fin) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8278, 80, 81syl2anc 584 . . . . . . 7 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
83 rnfi 9297 . . . . . . 7 ((𝑞 “ (𝐺 supp 0)) ∈ Fin → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8482, 83syl 17 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8534ffnd 6691 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn Word (𝐸𝐹))
8685ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
8724ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Word (𝐸𝐹) ∈ V)
88 0zd 12547 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 0 ∈ ℤ)
89 snssi 4774 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
9089adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
91 xpss2 5660 . . . . . . . . . . . . . . . . . . . 20 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
92 ssun2 4144 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
93 difxp 6139 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) = (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
9492, 93sseqtrri 3998 . . . . . . . . . . . . . . . . . . . 20 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
9591, 94sstrdi 3961 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
9690, 95syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
97 imassrn 6044 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 “ (𝐺 supp 0)) ⊆ ran 𝑞
9826frnd 6698 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
9998adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
10097, 99sstrid 3960 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹))
101 relxp 5658 . . . . . . . . . . . . . . . . . . . . 21 Rel (𝐸 × 𝐹)
102 relss 5746 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → (Rel (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0))))
103101, 102mpi 20 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0)))
104 relssdmrn 6243 . . . . . . . . . . . . . . . . . . . 20 (Rel (𝑞 “ (𝐺 supp 0)) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
105100, 103, 1043syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
106105sscond 4111 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
10796, 106sstrd 3959 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
108 imass2 6075 . . . . . . . . . . . . . . . . 17 ((𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
110109adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
11178adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → Fun 𝑞)
112 difpreima 7039 . . . . . . . . . . . . . . . . 17 (Fun 𝑞 → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
113111, 112syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
114 cnvimass 6055 . . . . . . . . . . . . . . . . . 18 (𝑞 “ (𝐸 × 𝐹)) ⊆ dom 𝑞
11537ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝑞 = Word (𝐸𝐹))
116114, 115sseqtrid 3991 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × 𝐹)) ⊆ Word (𝐸𝐹))
117 suppssdm 8158 . . . . . . . . . . . . . . . . . . . 20 (𝐺 supp 0) ⊆ dom 𝐺
11834fdmd 6700 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐺 = Word (𝐸𝐹))
119118ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝐺 = Word (𝐸𝐹))
120117, 119sseqtrid 3991 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
121120, 115sseqtrrd 3986 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ dom 𝑞)
122 sseqin2 4188 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 supp 0) ⊆ dom 𝑞 ↔ (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
123122biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((𝐺 supp 0) ⊆ dom 𝑞 → (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
124 dminss 6128 . . . . . . . . . . . . . . . . . . 19 (dom 𝑞 ∩ (𝐺 supp 0)) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0)))
125123, 124eqsstrrdi 3994 . . . . . . . . . . . . . . . . . 18 ((𝐺 supp 0) ⊆ dom 𝑞 → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
126121, 125syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
127116, 126ssdif2d 4113 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
128113, 127eqsstrd 3983 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
129110, 128sstrd 3959 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
130129sselda 3948 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
13186, 87, 88, 130fvdifsupp 8152 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) = 0)
132131oveq1d 7404 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = (0(.g𝑅)(1st ‘(𝑞𝑣))))
13351ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
13426ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
13536, 37sseqtrid 3991 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
136135ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
137136sselda 3948 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
138134, 137ffvelcdmd 7059 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
139 xp1st 8002 . . . . . . . . . . . . . 14 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
140138, 139syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
141133, 140sseldd 3949 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
14217, 5, 18mulg0 19012 . . . . . . . . . . . 12 ((1st ‘(𝑞𝑣)) ∈ 𝐵 → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
143141, 142syl 17 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
144132, 143eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
145144mpteq2dva 5202 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 ))
146145oveq2d 7405 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )))
14719grpmndd 18884 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
148147ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → 𝑅 ∈ Mnd)
14912a1i 11 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
1505gsumz 18769 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (𝑞 “ (𝐸 × {𝑓})) ∈ V) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
151148, 149, 150syl2anc 584 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
152146, 151eqtrd 2765 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = 0 )
153152, 4suppss2 8181 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ⊆ ran (𝑞 “ (𝐺 supp 0)))
15484, 153ssfid 9218 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ∈ Fin)
15561, 76, 77, 154isfsuppd 9323 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 )
1568ablcmnd 19724 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
157156adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑅 ∈ CMnd)
15824adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ∈ V)
15985ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝐺 Fn Word (𝐸𝐹))
160158adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ∈ V)
161 0zd 12547 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 0 ∈ ℤ)
162 simpr 484 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
163159, 160, 161, 162fvdifsupp 8152 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (𝐺𝑤) = 0)
164163oveq1d 7404 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
165 eqid 2730 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
166165crngmgp 20156 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
1676, 166syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
168167cmnmndd 19740 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
169168ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (mulGrp‘𝑅) ∈ Mnd)
17017subrgss 20487 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
1713, 170syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐵)
17251, 171unssd 4157 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
173 sswrd 14493 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
174172, 173syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
175174adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ⊆ Word 𝐵)
176175adantr 480 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ⊆ Word 𝐵)
177162eldifad 3928 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word (𝐸𝐹))
178176, 177sseldd 3949 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word 𝐵)
179165, 17mgpbas 20060 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑅))
180179gsumwcl 18772 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
181169, 178, 180syl2anc 584 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
18217, 5, 18mulg0 19012 . . . . . . . . . 10 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
183181, 182syl 17 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
184164, 183eqtrd 2765 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
18579adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ∈ Fin)
18619ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
18734adantr 480 . . . . . . . . . 10 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
188187ffvelcdmda 7058 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (𝐺𝑤) ∈ ℤ)
189168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ Mnd)
190175sselda 3948 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
191189, 190, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
19217, 18, 186, 188, 191mulgcld 19034 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
193117, 118sseqtrid 3991 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
194193adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
19517, 5, 157, 158, 184, 185, 192, 194gsummptres2 32999 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1963adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹 ∈ (SubRing‘𝑅))
19719ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑅 ∈ Grp)
19834ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝐺:Word (𝐸𝐹)⟶ℤ)
199194sselda 3948 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word (𝐸𝐹))
200198, 199ffvelcdmd 7059 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝐺𝑤) ∈ ℤ)
201168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (mulGrp‘𝑅) ∈ Mnd)
202194, 175sstrd 3959 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word 𝐵)
203202sselda 3948 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word 𝐵)
204201, 203, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
20517, 18, 197, 200, 204mulgcld 19034 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
20626adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
207206, 199ffvelcdmd 7059 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝑞𝑤) ∈ (𝐸 × 𝐹))
208 xp2nd 8003 . . . . . . . . 9 ((𝑞𝑤) ∈ (𝐸 × 𝐹) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
209207, 208syl 17 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
210 2fveq3 6865 . . . . . . . . 9 (𝑣 = 𝑤 → (2nd ‘(𝑞𝑣)) = (2nd ‘(𝑞𝑤)))
211210cbvmptv 5213 . . . . . . . 8 (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
21217, 5, 157, 185, 196, 205, 209, 211gsummpt2co 32994 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
213195, 212eqtrd 2765 . . . . . 6 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
214213adantr 480 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
215 elrgspnsubrunlem2.3 . . . . . 6 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
216215ad2antrr 726 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2177ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Ring)
21851ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
21926ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
220135adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
221220sselda 3948 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
222219, 221ffvelcdmd 7059 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
223222, 139syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
224218, 223sseldd 3949 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
225224adantllr 719 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
226196, 170syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹𝐵)
227226sselda 3948 . . . . . . . . . . . . . 14 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑓𝐵)
228227ad4ant13 751 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑓𝐵)
229 elrgspnsubrun.t . . . . . . . . . . . . . 14 · = (.r𝑅)
23017, 18, 229mulgass2 20224 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝐺𝑣) ∈ ℤ ∧ (1st ‘(𝑞𝑣)) ∈ 𝐵𝑓𝐵)) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
231217, 41, 225, 228, 230syl13anc 1374 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
232 oveq2 7397 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg 𝑣))
233 2fveq3 6865 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (1st ‘(𝑞𝑤)) = (1st ‘(𝑞𝑣)))
234 2fveq3 6865 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (2nd ‘(𝑞𝑤)) = (2nd ‘(𝑞𝑣)))
235233, 234oveq12d 7407 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
236232, 235eqeq12d 2746 . . . . . . . . . . . . . . 15 (𝑤 = 𝑣 → (((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) ↔ ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣)))))
237 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
238236, 237, 40rspcdva 3592 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
23926ffnd 6691 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞 Fn Word (𝐸𝐹))
240239ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞 Fn Word (𝐸𝐹))
241 elpreima 7032 . . . . . . . . . . . . . . . . . . . 20 (𝑞 Fn Word (𝐸𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↔ (𝑣 ∈ Word (𝐸𝐹) ∧ (𝑞𝑣) ∈ (𝐸 × {𝑓}))))
242241simplbda 499 . . . . . . . . . . . . . . . . . . 19 ((𝑞 Fn Word (𝐸𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
243240, 242sylancom 588 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
244 xp2nd 8003 . . . . . . . . . . . . . . . . . 18 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
245243, 244syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
246245elsnd 4609 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
247246adantllr 719 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
248247oveq2d 7405 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))) = ((1st ‘(𝑞𝑣)) · 𝑓))
249238, 248eqtrd 2765 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · 𝑓))
250249oveq2d 7405 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
251231, 250eqtr4d 2768 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
252251mpteq2dva 5202 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))))
253 fveq2 6860 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
254 oveq2 7397 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg 𝑤))
255253, 254oveq12d 7407 . . . . . . . . . . 11 (𝑣 = 𝑤 → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
256255cbvmptv 5213 . . . . . . . . . 10 (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
257252, 256eqtrdi 2781 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
258257oveq2d 7405 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2597ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ Ring)
26012a1i 11 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
26119ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
262187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
263262, 221ffvelcdmd 7059 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
26417, 18, 261, 263, 224mulgcld 19034 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐵)
26546ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
266 0zd 12547 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
267265, 220, 266fmptssfisupp 9351 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
26854adantl 481 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑦𝐵) → (0(.g𝑅)𝑦) = 0 )
26956a1i 11 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ V)
270267, 268, 263, 224, 269fsuppssov1 9341 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
27117, 5, 229, 259, 260, 227, 264, 270gsummulc1 20231 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
272271adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
273157adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ CMnd)
27485ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
275158ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → Word (𝐸𝐹) ∈ V)
276 0zd 12547 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 0 ∈ ℤ)
277135ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
278 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
279278eldifad 3928 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
280277, 279sseldd 3949 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
281 eldif 3926 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ↔ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
282 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0))
283 fvexd 6875 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) ∧ 𝑢 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑢)) ∈ V)
284 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))
285282, 283, 284fnmptd 6661 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
286285adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
287 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
288 2fveq3 6865 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑣)))
289 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
290 fvexd 6875 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ V)
291284, 288, 289, 290fvmptd3 6993 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
292291adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
293239ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑞 Fn Word (𝐸𝐹))
294 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
295293, 294, 242syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
296295, 244syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
297292, 296eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
298286, 287, 297elpreimad 7033 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
299298stoic1a 1772 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ¬ 𝑣 ∈ (𝐺 supp 0))
300299anasss 466 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
301281, 300sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
302280, 301eldifd 3927 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
303274, 275, 276, 302fvdifsupp 8152 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝐺𝑣) = 0)
304303oveq1d 7404 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
305168ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
306175adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → Word (𝐸𝐹) ⊆ Word 𝐵)
307220, 306sstrd 3959 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word 𝐵)
308307ssdifssd 4112 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ⊆ Word 𝐵)
309308sselda 3948 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word 𝐵)
310179gsumwcl 18772 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑣 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
311305, 309, 310syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
31217, 5, 18mulg0 19012 . . . . . . . . . . . . . . 15 (((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
313311, 312syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
314304, 313eqtrd 2765 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
315314ralrimiva 3126 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
316255eqeq1d 2732 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ))
317316cbvralvw 3216 . . . . . . . . . . . . 13 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
318 2fveq3 6865 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑤)))
319318cbvmptv 5213 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
320319, 211eqtr4i 2756 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
321320cnveqi 5840 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
322321imaeq1i 6030 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) = ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓})
323322difeq2i 4088 . . . . . . . . . . . . . 14 ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) = ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))
324323raleqi 3299 . . . . . . . . . . . . 13 (∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
325317, 324bitri 275 . . . . . . . . . . . 12 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
326315, 325sylib 218 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
327326r19.21bi 3230 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
328185adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝐺 supp 0) ∈ Fin)
329328cnvimamptfin 9310 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ∈ Fin)
33019ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
331187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
332220sselda 3948 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word (𝐸𝐹))
333331, 332ffvelcdmd 7059 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑤) ∈ ℤ)
334168ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
335307sselda 3948 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word 𝐵)
336334, 335, 180syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
33717, 18, 330, 333, 336mulgcld 19034 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
338239ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞 Fn Word (𝐸𝐹))
339194ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
340 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑤(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
341 fvexd 6875 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ V)
342340, 341, 319fnmptd 6661 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
343 elpreima 7032 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ↔ (𝑣 ∈ (𝐺 supp 0) ∧ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})))
344343simprbda 498 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
345342, 344sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
346339, 345sseldd 3949 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ Word (𝐸𝐹))
34726ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
348347, 346ffvelcdmd 7059 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
349 1st2nd2 8009 . . . . . . . . . . . . . . . 16 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
350348, 349syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
351348, 139syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
352345, 291syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
353343simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
354342, 353sylancom 588 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
355352, 354eqeltrrd 2830 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
356351, 355opelxpd 5679 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩ ∈ (𝐸 × {𝑓}))
357350, 356eqeltrd 2829 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
358338, 346, 357elpreimad 7033 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
359358ex 412 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))))
360359ssrdv 3954 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
361322, 360eqsstrrid 3988 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
36217, 5, 273, 260, 327, 329, 337, 361gsummptres2 32999 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
363362adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
364258, 272, 3633eqtr3d 2773 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
365364mpteq2dva 5202 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)) = (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
366365oveq2d 7405 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
367214, 216, 3663eqtr4d 2775 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
368155, 367jca 511 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
36961, 75, 368rspcedvd 3593 . 2 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
370 fveq2 6860 . . . . 5 (𝑎 = (𝑞𝑤) → (1st𝑎) = (1st ‘(𝑞𝑤)))
371 fveq2 6860 . . . . 5 (𝑎 = (𝑞𝑤) → (2nd𝑎) = (2nd ‘(𝑞𝑤)))
372370, 371oveq12d 7407 . . . 4 (𝑎 = (𝑞𝑤) → ((1st𝑎) · (2nd𝑎)) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
373372eqeq2d 2741 . . 3 (𝑎 = (𝑞𝑤) → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))))
374 vex 3454 . . . . . . . 8 𝑒 ∈ V
375 vex 3454 . . . . . . . 8 𝑓 ∈ V
376374, 375op1std 7980 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (1st𝑎) = 𝑒)
377374, 375op2ndd 7981 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (2nd𝑎) = 𝑓)
378376, 377oveq12d 7407 . . . . . 6 (𝑎 = ⟨𝑒, 𝑓⟩ → ((1st𝑎) · (2nd𝑎)) = (𝑒 · 𝑓))
379378eqeq2d 2741 . . . . 5 (𝑎 = ⟨𝑒, 𝑓⟩ → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)))
380 simpllr 775 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑒𝐸)
381 simplr 768 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑓𝐹)
382380, 381opelxpd 5679 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ⟨𝑒, 𝑓⟩ ∈ (𝐸 × 𝐹))
383 simpr 484 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
384379, 382, 383rspcedvdw 3594 . . . 4 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
385165, 229mgpplusg 20059 . . . . 5 · = (+g‘(mulGrp‘𝑅))
386167adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ CMnd)
387165subrgsubm 20500 . . . . . . 7 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
3881, 387syl 17 . . . . . 6 (𝜑𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
389388adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
390165subrgsubm 20500 . . . . . . 7 (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
3913, 390syl 17 . . . . . 6 (𝜑𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
392391adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
393 simpr 484 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word (𝐸𝐹))
394385, 386, 389, 392, 393gsumwun 33011 . . . 4 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑒𝐸𝑓𝐹 ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
395384, 394r19.29vva 3198 . . 3 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
396373, 24, 21, 395ac6mapd 32555 . 2 (𝜑 → ∃𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
397369, 396r19.29a 3142 1 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cdif 3913  cun 3914  cin 3915  wss 3916  {csn 4591  cop 4597   class class class wbr 5109  cmpt 5190   × cxp 5638  ccnv 5639  dom cdm 5640  ran crn 5641  cima 5643  Rel wrel 5645  Fun wfun 6507   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969   supp csupp 8141  m cmap 8801  Fincfn 8920   finSupp cfsupp 9318  0cc0 11074  cz 12535  Word cword 14484  Basecbs 17185  .rcmulr 17227  0gc0g 17408   Σg cgsu 17409  Mndcmnd 18667  SubMndcsubmnd 18715  Grpcgrp 18871  .gcmg 19005  SubGrpcsubg 19058  CMndccmn 19716  Abelcabl 19717  mulGrpcmgp 20055  Ringcrg 20148  CRingccrg 20149  SubRingcsubrg 20484  RingSpancrgspn 20525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-inf2 9600  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-oi 9469  df-r1 9723  df-rank 9724  df-card 9898  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-word 14485  df-lsw 14534  df-concat 14542  df-s1 14567  df-substr 14612  df-pfx 14642  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-0g 17410  df-gsum 17411  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-subrg 20485
This theorem is referenced by:  elrgspnsubrun  33206
  Copyright terms: Public domain W3C validator