Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem2 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem2 33207
Description: Lemma for elrgspnsubrun 33208, second direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem2.x (𝜑𝑋𝐵)
elrgspnsubrunlem2.1 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
elrgspnsubrunlem2.2 (𝜑𝐺 finSupp 0)
elrgspnsubrunlem2.3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
Assertion
Ref Expression
elrgspnsubrunlem2 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Distinct variable groups:   0 ,𝑓,𝑝,𝑤   · ,𝑓,𝑝,𝑤   𝐵,𝑓,𝑤   𝑓,𝐸,𝑝,𝑤   𝑓,𝐹,𝑝,𝑤   𝑓,𝐺,𝑝,𝑤   𝑅,𝑓,𝑝,𝑤   𝑋,𝑝   𝜑,𝑓,𝑝,𝑤
Allowed substitution hints:   𝐵(𝑝)   𝑁(𝑤,𝑓,𝑝)   𝑋(𝑤,𝑓)

Proof of Theorem elrgspnsubrunlem2
Dummy variables 𝑞 𝑣 𝑦 𝑎 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspnsubrun.e . . . . 5 (𝜑𝐸 ∈ (SubRing‘𝑅))
21ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐸 ∈ (SubRing‘𝑅))
3 elrgspnsubrun.f . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝑅))
43ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐹 ∈ (SubRing‘𝑅))
5 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
6 elrgspnsubrun.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
76crngringd 20159 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
87ringabld 20196 . . . . . . 7 (𝜑𝑅 ∈ Abel)
98ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝑅 ∈ Abel)
10 vex 3440 . . . . . . . . 9 𝑞 ∈ V
1110cnvex 7850 . . . . . . . 8 𝑞 ∈ V
1211imaex 7839 . . . . . . 7 (𝑞 “ (𝐸 × {𝑓})) ∈ V
1312a1i 11 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
14 subrgsubg 20487 . . . . . . . 8 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubGrp‘𝑅))
151, 14syl 17 . . . . . . 7 (𝜑𝐸 ∈ (SubGrp‘𝑅))
1615ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸 ∈ (SubGrp‘𝑅))
17 elrgspnsubrun.b . . . . . . . 8 𝐵 = (Base‘𝑅)
18 eqid 2731 . . . . . . . 8 (.g𝑅) = (.g𝑅)
196crnggrpd 20160 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2019ad4antr 732 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
211, 3xpexd 7679 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 × 𝐹) ∈ V)
221, 3unexd 7682 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ∈ V)
23 wrdexg 14426 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
2422, 23syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ∈ V)
2521, 24elmapd 8759 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹)) ↔ 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹)))
2625biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
2726ffund 6650 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Fun 𝑞)
2827ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Fun 𝑞)
29 fvimacnvi 6980 . . . . . . . . . 10 ((Fun 𝑞𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
3028, 29sylancom 588 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
31 xp1st 7948 . . . . . . . . 9 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3230, 31syl 17 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3316adantr 480 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸 ∈ (SubGrp‘𝑅))
34 elrgspnsubrunlem2.1 . . . . . . . . . 10 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
3534ad4antr 732 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
36 cnvimass 6026 . . . . . . . . . . 11 (𝑞 “ (𝐸 × {𝑓})) ⊆ dom 𝑞
3726fdmd 6656 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → dom 𝑞 = Word (𝐸𝐹))
3837ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → dom 𝑞 = Word (𝐸𝐹))
3936, 38sseqtrid 3972 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
4039sselda 3929 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
4135, 40ffvelcdmd 7013 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
4217, 18, 20, 32, 33, 41subgmulgcld 33016 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐸)
4342fmpttd 7043 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))):(𝑞 “ (𝐸 × {𝑓}))⟶𝐸)
4434feqmptd 6885 . . . . . . . . . 10 (𝜑𝐺 = (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)))
45 elrgspnsubrunlem2.2 . . . . . . . . . 10 (𝜑𝐺 finSupp 0)
4644, 45eqbrtrrd 5110 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
48 0zd 12475 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
4947, 39, 48fmptssfisupp 9273 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
5017subrgss 20482 . . . . . . . . . . 11 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
511, 50syl 17 . . . . . . . . . 10 (𝜑𝐸𝐵)
5251ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸𝐵)
5352sselda 3929 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → 𝑦𝐵)
5417, 5, 18mulg0 18982 . . . . . . . 8 (𝑦𝐵 → (0(.g𝑅)𝑦) = 0 )
5553, 54syl 17 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → (0(.g𝑅)𝑦) = 0 )
565fvexi 6831 . . . . . . . 8 0 ∈ V
5756a1i 11 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ V)
5849, 55, 41, 32, 57fsuppssov1 9263 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
595, 9, 13, 16, 43, 58gsumsubgcl 19827 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ 𝐸)
6059fmpttd 7043 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))):𝐹𝐸)
612, 4, 60elmapdd 8760 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) ∈ (𝐸m 𝐹))
62 breq1 5089 . . . . 5 (𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
6362adantl 481 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
64 nfv 1915 . . . . . . . 8 𝑓((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
65 nfmpt1 5185 . . . . . . . . 9 𝑓(𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6665nfeq2 2912 . . . . . . . 8 𝑓 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6764, 66nfan 1900 . . . . . . 7 𝑓(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
68 simpr 484 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
69 ovexd 7376 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ V)
7068, 69fvmpt2d 6937 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑝𝑓) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
7170oveq1d 7356 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → ((𝑝𝑓) · 𝑓) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
7267, 71mpteq2da 5178 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)) = (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))
7372oveq2d 7357 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
7473eqeq2d 2742 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
7563, 74anbi12d 632 . . 3 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → ((𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) ↔ ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))))
7656a1i 11 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 0 ∈ V)
7760ffund 6650 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
7827adantr 480 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun 𝑞)
7945fsuppimpd 9248 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ∈ Fin)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝐺 supp 0) ∈ Fin)
81 imafi 9194 . . . . . . . 8 ((Fun 𝑞 ∧ (𝐺 supp 0) ∈ Fin) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8278, 80, 81syl2anc 584 . . . . . . 7 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
83 rnfi 9219 . . . . . . 7 ((𝑞 “ (𝐺 supp 0)) ∈ Fin → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8482, 83syl 17 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8534ffnd 6647 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn Word (𝐸𝐹))
8685ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
8724ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Word (𝐸𝐹) ∈ V)
88 0zd 12475 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 0 ∈ ℤ)
89 snssi 4755 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
9089adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
91 xpss2 5631 . . . . . . . . . . . . . . . . . . . 20 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
92 ssun2 4124 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
93 difxp 6106 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) = (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
9492, 93sseqtrri 3979 . . . . . . . . . . . . . . . . . . . 20 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
9591, 94sstrdi 3942 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
9690, 95syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
97 imassrn 6015 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 “ (𝐺 supp 0)) ⊆ ran 𝑞
9826frnd 6654 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
9998adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
10097, 99sstrid 3941 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹))
101 relxp 5629 . . . . . . . . . . . . . . . . . . . . 21 Rel (𝐸 × 𝐹)
102 relss 5717 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → (Rel (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0))))
103101, 102mpi 20 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0)))
104 relssdmrn 6211 . . . . . . . . . . . . . . . . . . . 20 (Rel (𝑞 “ (𝐺 supp 0)) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
105100, 103, 1043syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
106105sscond 4091 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
10796, 106sstrd 3940 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
108 imass2 6046 . . . . . . . . . . . . . . . . 17 ((𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
110109adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
11178adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → Fun 𝑞)
112 difpreima 6993 . . . . . . . . . . . . . . . . 17 (Fun 𝑞 → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
113111, 112syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
114 cnvimass 6026 . . . . . . . . . . . . . . . . . 18 (𝑞 “ (𝐸 × 𝐹)) ⊆ dom 𝑞
11537ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝑞 = Word (𝐸𝐹))
116114, 115sseqtrid 3972 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × 𝐹)) ⊆ Word (𝐸𝐹))
117 suppssdm 8102 . . . . . . . . . . . . . . . . . . . 20 (𝐺 supp 0) ⊆ dom 𝐺
11834fdmd 6656 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐺 = Word (𝐸𝐹))
119118ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝐺 = Word (𝐸𝐹))
120117, 119sseqtrid 3972 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
121120, 115sseqtrrd 3967 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ dom 𝑞)
122 sseqin2 4168 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 supp 0) ⊆ dom 𝑞 ↔ (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
123122biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((𝐺 supp 0) ⊆ dom 𝑞 → (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
124 dminss 6095 . . . . . . . . . . . . . . . . . . 19 (dom 𝑞 ∩ (𝐺 supp 0)) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0)))
125123, 124eqsstrrdi 3975 . . . . . . . . . . . . . . . . . 18 ((𝐺 supp 0) ⊆ dom 𝑞 → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
126121, 125syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
127116, 126ssdif2d 4093 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
128113, 127eqsstrd 3964 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
129110, 128sstrd 3940 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
130129sselda 3929 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
13186, 87, 88, 130fvdifsupp 8096 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) = 0)
132131oveq1d 7356 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = (0(.g𝑅)(1st ‘(𝑞𝑣))))
13351ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
13426ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
13536, 37sseqtrid 3972 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
136135ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
137136sselda 3929 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
138134, 137ffvelcdmd 7013 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
139 xp1st 7948 . . . . . . . . . . . . . 14 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
140138, 139syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
141133, 140sseldd 3930 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
14217, 5, 18mulg0 18982 . . . . . . . . . . . 12 ((1st ‘(𝑞𝑣)) ∈ 𝐵 → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
143141, 142syl 17 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
144132, 143eqtrd 2766 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
145144mpteq2dva 5179 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 ))
146145oveq2d 7357 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )))
14719grpmndd 18854 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
148147ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → 𝑅 ∈ Mnd)
14912a1i 11 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
1505gsumz 18739 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (𝑞 “ (𝐸 × {𝑓})) ∈ V) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
151148, 149, 150syl2anc 584 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
152146, 151eqtrd 2766 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = 0 )
153152, 4suppss2 8125 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ⊆ ran (𝑞 “ (𝐺 supp 0)))
15484, 153ssfid 9148 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ∈ Fin)
15561, 76, 77, 154isfsuppd 9245 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 )
1568ablcmnd 19695 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
157156adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑅 ∈ CMnd)
15824adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ∈ V)
15985ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝐺 Fn Word (𝐸𝐹))
160158adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ∈ V)
161 0zd 12475 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 0 ∈ ℤ)
162 simpr 484 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
163159, 160, 161, 162fvdifsupp 8096 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (𝐺𝑤) = 0)
164163oveq1d 7356 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
165 eqid 2731 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
166165crngmgp 20154 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
1676, 166syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
168167cmnmndd 19711 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
169168ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (mulGrp‘𝑅) ∈ Mnd)
17017subrgss 20482 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
1713, 170syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐵)
17251, 171unssd 4137 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
173 sswrd 14424 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
174172, 173syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
175174adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ⊆ Word 𝐵)
176175adantr 480 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ⊆ Word 𝐵)
177162eldifad 3909 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word (𝐸𝐹))
178176, 177sseldd 3930 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word 𝐵)
179165, 17mgpbas 20058 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑅))
180179gsumwcl 18742 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
181169, 178, 180syl2anc 584 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
18217, 5, 18mulg0 18982 . . . . . . . . . 10 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
183181, 182syl 17 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
184164, 183eqtrd 2766 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
18579adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ∈ Fin)
18619ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
18734adantr 480 . . . . . . . . . 10 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
188187ffvelcdmda 7012 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (𝐺𝑤) ∈ ℤ)
189168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ Mnd)
190175sselda 3929 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
191189, 190, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
19217, 18, 186, 188, 191mulgcld 19004 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
193117, 118sseqtrid 3972 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
194193adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
19517, 5, 157, 158, 184, 185, 192, 194gsummptres2 33025 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1963adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹 ∈ (SubRing‘𝑅))
19719ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑅 ∈ Grp)
19834ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝐺:Word (𝐸𝐹)⟶ℤ)
199194sselda 3929 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word (𝐸𝐹))
200198, 199ffvelcdmd 7013 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝐺𝑤) ∈ ℤ)
201168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (mulGrp‘𝑅) ∈ Mnd)
202194, 175sstrd 3940 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word 𝐵)
203202sselda 3929 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word 𝐵)
204201, 203, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
20517, 18, 197, 200, 204mulgcld 19004 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
20626adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
207206, 199ffvelcdmd 7013 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝑞𝑤) ∈ (𝐸 × 𝐹))
208 xp2nd 7949 . . . . . . . . 9 ((𝑞𝑤) ∈ (𝐸 × 𝐹) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
209207, 208syl 17 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
210 2fveq3 6822 . . . . . . . . 9 (𝑣 = 𝑤 → (2nd ‘(𝑞𝑣)) = (2nd ‘(𝑞𝑤)))
211210cbvmptv 5190 . . . . . . . 8 (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
21217, 5, 157, 185, 196, 205, 209, 211gsummpt2co 33020 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
213195, 212eqtrd 2766 . . . . . 6 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
214213adantr 480 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
215 elrgspnsubrunlem2.3 . . . . . 6 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
216215ad2antrr 726 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2177ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Ring)
21851ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
21926ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
220135adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
221220sselda 3929 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
222219, 221ffvelcdmd 7013 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
223222, 139syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
224218, 223sseldd 3930 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
225224adantllr 719 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
226196, 170syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹𝐵)
227226sselda 3929 . . . . . . . . . . . . . 14 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑓𝐵)
228227ad4ant13 751 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑓𝐵)
229 elrgspnsubrun.t . . . . . . . . . . . . . 14 · = (.r𝑅)
23017, 18, 229mulgass2 20222 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝐺𝑣) ∈ ℤ ∧ (1st ‘(𝑞𝑣)) ∈ 𝐵𝑓𝐵)) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
231217, 41, 225, 228, 230syl13anc 1374 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
232 oveq2 7349 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg 𝑣))
233 2fveq3 6822 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (1st ‘(𝑞𝑤)) = (1st ‘(𝑞𝑣)))
234 2fveq3 6822 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (2nd ‘(𝑞𝑤)) = (2nd ‘(𝑞𝑣)))
235233, 234oveq12d 7359 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
236232, 235eqeq12d 2747 . . . . . . . . . . . . . . 15 (𝑤 = 𝑣 → (((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) ↔ ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣)))))
237 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
238236, 237, 40rspcdva 3573 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
23926ffnd 6647 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞 Fn Word (𝐸𝐹))
240239ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞 Fn Word (𝐸𝐹))
241 elpreima 6986 . . . . . . . . . . . . . . . . . . . 20 (𝑞 Fn Word (𝐸𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↔ (𝑣 ∈ Word (𝐸𝐹) ∧ (𝑞𝑣) ∈ (𝐸 × {𝑓}))))
242241simplbda 499 . . . . . . . . . . . . . . . . . . 19 ((𝑞 Fn Word (𝐸𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
243240, 242sylancom 588 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
244 xp2nd 7949 . . . . . . . . . . . . . . . . . 18 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
245243, 244syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
246245elsnd 4589 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
247246adantllr 719 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
248247oveq2d 7357 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))) = ((1st ‘(𝑞𝑣)) · 𝑓))
249238, 248eqtrd 2766 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · 𝑓))
250249oveq2d 7357 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
251231, 250eqtr4d 2769 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
252251mpteq2dva 5179 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))))
253 fveq2 6817 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
254 oveq2 7349 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg 𝑤))
255253, 254oveq12d 7359 . . . . . . . . . . 11 (𝑣 = 𝑤 → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
256255cbvmptv 5190 . . . . . . . . . 10 (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
257252, 256eqtrdi 2782 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
258257oveq2d 7357 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2597ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ Ring)
26012a1i 11 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
26119ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
262187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
263262, 221ffvelcdmd 7013 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
26417, 18, 261, 263, 224mulgcld 19004 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐵)
26546ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
266 0zd 12475 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
267265, 220, 266fmptssfisupp 9273 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
26854adantl 481 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑦𝐵) → (0(.g𝑅)𝑦) = 0 )
26956a1i 11 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ V)
270267, 268, 263, 224, 269fsuppssov1 9263 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
27117, 5, 229, 259, 260, 227, 264, 270gsummulc1 20229 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
272271adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
273157adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ CMnd)
27485ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
275158ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → Word (𝐸𝐹) ∈ V)
276 0zd 12475 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 0 ∈ ℤ)
277135ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
278 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
279278eldifad 3909 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
280277, 279sseldd 3930 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
281 eldif 3907 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ↔ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
282 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0))
283 fvexd 6832 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) ∧ 𝑢 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑢)) ∈ V)
284 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))
285282, 283, 284fnmptd 6617 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
286285adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
287 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
288 2fveq3 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑣)))
289 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
290 fvexd 6832 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ V)
291284, 288, 289, 290fvmptd3 6947 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
292291adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
293239ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑞 Fn Word (𝐸𝐹))
294 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
295293, 294, 242syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
296295, 244syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
297292, 296eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
298286, 287, 297elpreimad 6987 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
299298stoic1a 1773 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ¬ 𝑣 ∈ (𝐺 supp 0))
300299anasss 466 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
301281, 300sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
302280, 301eldifd 3908 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
303274, 275, 276, 302fvdifsupp 8096 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝐺𝑣) = 0)
304303oveq1d 7356 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
305168ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
306175adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → Word (𝐸𝐹) ⊆ Word 𝐵)
307220, 306sstrd 3940 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word 𝐵)
308307ssdifssd 4092 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ⊆ Word 𝐵)
309308sselda 3929 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word 𝐵)
310179gsumwcl 18742 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑣 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
311305, 309, 310syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
31217, 5, 18mulg0 18982 . . . . . . . . . . . . . . 15 (((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
313311, 312syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
314304, 313eqtrd 2766 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
315314ralrimiva 3124 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
316255eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ))
317316cbvralvw 3210 . . . . . . . . . . . . 13 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
318 2fveq3 6822 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑤)))
319318cbvmptv 5190 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
320319, 211eqtr4i 2757 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
321320cnveqi 5809 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
322321imaeq1i 6001 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) = ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓})
323322difeq2i 4068 . . . . . . . . . . . . . 14 ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) = ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))
324323raleqi 3290 . . . . . . . . . . . . 13 (∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
325317, 324bitri 275 . . . . . . . . . . . 12 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
326315, 325sylib 218 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
327326r19.21bi 3224 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
328185adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝐺 supp 0) ∈ Fin)
329328cnvimamptfin 9232 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ∈ Fin)
33019ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
331187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
332220sselda 3929 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word (𝐸𝐹))
333331, 332ffvelcdmd 7013 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑤) ∈ ℤ)
334168ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
335307sselda 3929 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word 𝐵)
336334, 335, 180syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
33717, 18, 330, 333, 336mulgcld 19004 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
338239ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞 Fn Word (𝐸𝐹))
339194ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
340 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑤(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
341 fvexd 6832 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ V)
342340, 341, 319fnmptd 6617 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
343 elpreima 6986 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ↔ (𝑣 ∈ (𝐺 supp 0) ∧ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})))
344343simprbda 498 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
345342, 344sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
346339, 345sseldd 3930 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ Word (𝐸𝐹))
34726ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
348347, 346ffvelcdmd 7013 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
349 1st2nd2 7955 . . . . . . . . . . . . . . . 16 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
350348, 349syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
351348, 139syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
352345, 291syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
353343simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
354342, 353sylancom 588 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
355352, 354eqeltrrd 2832 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
356351, 355opelxpd 5650 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩ ∈ (𝐸 × {𝑓}))
357350, 356eqeltrd 2831 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
358338, 346, 357elpreimad 6987 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
359358ex 412 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))))
360359ssrdv 3935 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
361322, 360eqsstrrid 3969 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
36217, 5, 273, 260, 327, 329, 337, 361gsummptres2 33025 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
363362adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
364258, 272, 3633eqtr3d 2774 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
365364mpteq2dva 5179 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)) = (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
366365oveq2d 7357 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
367214, 216, 3663eqtr4d 2776 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
368155, 367jca 511 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
36961, 75, 368rspcedvd 3574 . 2 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
370 fveq2 6817 . . . . 5 (𝑎 = (𝑞𝑤) → (1st𝑎) = (1st ‘(𝑞𝑤)))
371 fveq2 6817 . . . . 5 (𝑎 = (𝑞𝑤) → (2nd𝑎) = (2nd ‘(𝑞𝑤)))
372370, 371oveq12d 7359 . . . 4 (𝑎 = (𝑞𝑤) → ((1st𝑎) · (2nd𝑎)) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
373372eqeq2d 2742 . . 3 (𝑎 = (𝑞𝑤) → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))))
374 vex 3440 . . . . . . . 8 𝑒 ∈ V
375 vex 3440 . . . . . . . 8 𝑓 ∈ V
376374, 375op1std 7926 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (1st𝑎) = 𝑒)
377374, 375op2ndd 7927 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (2nd𝑎) = 𝑓)
378376, 377oveq12d 7359 . . . . . 6 (𝑎 = ⟨𝑒, 𝑓⟩ → ((1st𝑎) · (2nd𝑎)) = (𝑒 · 𝑓))
379378eqeq2d 2742 . . . . 5 (𝑎 = ⟨𝑒, 𝑓⟩ → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)))
380 simpllr 775 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑒𝐸)
381 simplr 768 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑓𝐹)
382380, 381opelxpd 5650 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ⟨𝑒, 𝑓⟩ ∈ (𝐸 × 𝐹))
383 simpr 484 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
384379, 382, 383rspcedvdw 3575 . . . 4 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
385165, 229mgpplusg 20057 . . . . 5 · = (+g‘(mulGrp‘𝑅))
386167adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ CMnd)
387165subrgsubm 20495 . . . . . . 7 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
3881, 387syl 17 . . . . . 6 (𝜑𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
389388adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
390165subrgsubm 20495 . . . . . . 7 (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
3913, 390syl 17 . . . . . 6 (𝜑𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
392391adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
393 simpr 484 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word (𝐸𝐹))
394385, 386, 389, 392, 393gsumwun 33037 . . . 4 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑒𝐸𝑓𝐹 ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
395384, 394r19.29vva 3192 . . 3 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
396373, 24, 21, 395ac6mapd 32598 . 2 (𝜑 → ∃𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
397369, 396r19.29a 3140 1 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  {csn 4571  cop 4577   class class class wbr 5086  cmpt 5167   × cxp 5609  ccnv 5610  dom cdm 5611  ran crn 5612  cima 5614  Rel wrel 5616  Fun wfun 6470   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915   supp csupp 8085  m cmap 8745  Fincfn 8864   finSupp cfsupp 9240  0cc0 11001  cz 12463  Word cword 14415  Basecbs 17115  .rcmulr 17157  0gc0g 17338   Σg cgsu 17339  Mndcmnd 18637  SubMndcsubmnd 18685  Grpcgrp 18841  .gcmg 18975  SubGrpcsubg 19028  CMndccmn 19687  Abelcabl 19688  mulGrpcmgp 20053  Ringcrg 20146  CRingccrg 20147  SubRingcsubrg 20479  RingSpancrgspn 20520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-r1 9652  df-rank 9653  df-card 9827  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-word 14416  df-lsw 14465  df-concat 14473  df-s1 14499  df-substr 14544  df-pfx 14574  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-0g 17340  df-gsum 17341  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-subrg 20480
This theorem is referenced by:  elrgspnsubrun  33208
  Copyright terms: Public domain W3C validator