Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem2 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem2 33240
Description: Lemma for elrgspnsubrun 33241, second direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem2.x (𝜑𝑋𝐵)
elrgspnsubrunlem2.1 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
elrgspnsubrunlem2.2 (𝜑𝐺 finSupp 0)
elrgspnsubrunlem2.3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
Assertion
Ref Expression
elrgspnsubrunlem2 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Distinct variable groups:   0 ,𝑓,𝑝,𝑤   · ,𝑓,𝑝,𝑤   𝐵,𝑓,𝑤   𝑓,𝐸,𝑝,𝑤   𝑓,𝐹,𝑝,𝑤   𝑓,𝐺,𝑝,𝑤   𝑅,𝑓,𝑝,𝑤   𝑋,𝑝   𝜑,𝑓,𝑝,𝑤
Allowed substitution hints:   𝐵(𝑝)   𝑁(𝑤,𝑓,𝑝)   𝑋(𝑤,𝑓)

Proof of Theorem elrgspnsubrunlem2
Dummy variables 𝑞 𝑣 𝑦 𝑎 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspnsubrun.e . . . . 5 (𝜑𝐸 ∈ (SubRing‘𝑅))
21ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐸 ∈ (SubRing‘𝑅))
3 elrgspnsubrun.f . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝑅))
43ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐹 ∈ (SubRing‘𝑅))
5 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
6 elrgspnsubrun.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
76crngringd 20239 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
87ringabld 20272 . . . . . . 7 (𝜑𝑅 ∈ Abel)
98ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝑅 ∈ Abel)
10 vex 3483 . . . . . . . . 9 𝑞 ∈ V
1110cnvex 7943 . . . . . . . 8 𝑞 ∈ V
1211imaex 7932 . . . . . . 7 (𝑞 “ (𝐸 × {𝑓})) ∈ V
1312a1i 11 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
14 subrgsubg 20569 . . . . . . . 8 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubGrp‘𝑅))
151, 14syl 17 . . . . . . 7 (𝜑𝐸 ∈ (SubGrp‘𝑅))
1615ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸 ∈ (SubGrp‘𝑅))
17 elrgspnsubrun.b . . . . . . . 8 𝐵 = (Base‘𝑅)
18 eqid 2736 . . . . . . . 8 (.g𝑅) = (.g𝑅)
196crnggrpd 20240 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2019ad4antr 732 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
211, 3xpexd 7767 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 × 𝐹) ∈ V)
221, 3unexd 7770 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ∈ V)
23 wrdexg 14558 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
2422, 23syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ∈ V)
2521, 24elmapd 8876 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹)) ↔ 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹)))
2625biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
2726ffund 6738 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Fun 𝑞)
2827ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Fun 𝑞)
29 fvimacnvi 7070 . . . . . . . . . 10 ((Fun 𝑞𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
3028, 29sylancom 588 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
31 xp1st 8042 . . . . . . . . 9 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3230, 31syl 17 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3316adantr 480 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸 ∈ (SubGrp‘𝑅))
34 elrgspnsubrunlem2.1 . . . . . . . . . 10 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
3534ad4antr 732 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
36 cnvimass 6098 . . . . . . . . . . 11 (𝑞 “ (𝐸 × {𝑓})) ⊆ dom 𝑞
3726fdmd 6744 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → dom 𝑞 = Word (𝐸𝐹))
3837ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → dom 𝑞 = Word (𝐸𝐹))
3936, 38sseqtrid 4025 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
4039sselda 3982 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
4135, 40ffvelcdmd 7103 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
4217, 18, 20, 32, 33, 41subgmulgcld 33033 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐸)
4342fmpttd 7133 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))):(𝑞 “ (𝐸 × {𝑓}))⟶𝐸)
4434feqmptd 6975 . . . . . . . . . 10 (𝜑𝐺 = (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)))
45 elrgspnsubrunlem2.2 . . . . . . . . . 10 (𝜑𝐺 finSupp 0)
4644, 45eqbrtrrd 5165 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
48 0zd 12621 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
4947, 39, 48fmptssfisupp 9430 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
5017subrgss 20564 . . . . . . . . . . 11 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
511, 50syl 17 . . . . . . . . . 10 (𝜑𝐸𝐵)
5251ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸𝐵)
5352sselda 3982 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → 𝑦𝐵)
5417, 5, 18mulg0 19088 . . . . . . . 8 (𝑦𝐵 → (0(.g𝑅)𝑦) = 0 )
5553, 54syl 17 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → (0(.g𝑅)𝑦) = 0 )
565fvexi 6918 . . . . . . . 8 0 ∈ V
5756a1i 11 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ V)
5849, 55, 41, 32, 57fsuppssov1 9420 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
595, 9, 13, 16, 43, 58gsumsubgcl 19934 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ 𝐸)
6059fmpttd 7133 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))):𝐹𝐸)
612, 4, 60elmapdd 8877 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) ∈ (𝐸m 𝐹))
62 breq1 5144 . . . . 5 (𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
6362adantl 481 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
64 nfv 1914 . . . . . . . 8 𝑓((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
65 nfmpt1 5248 . . . . . . . . 9 𝑓(𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6665nfeq2 2922 . . . . . . . 8 𝑓 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6764, 66nfan 1899 . . . . . . 7 𝑓(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
68 simpr 484 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
69 ovexd 7464 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ V)
7068, 69fvmpt2d 7027 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑝𝑓) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
7170oveq1d 7444 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → ((𝑝𝑓) · 𝑓) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
7267, 71mpteq2da 5238 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)) = (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))
7372oveq2d 7445 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
7473eqeq2d 2747 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
7563, 74anbi12d 632 . . 3 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → ((𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) ↔ ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))))
7656a1i 11 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 0 ∈ V)
7760ffund 6738 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
7827adantr 480 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun 𝑞)
7945fsuppimpd 9405 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ∈ Fin)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝐺 supp 0) ∈ Fin)
81 imafi 9349 . . . . . . . 8 ((Fun 𝑞 ∧ (𝐺 supp 0) ∈ Fin) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8278, 80, 81syl2anc 584 . . . . . . 7 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
83 rnfi 9376 . . . . . . 7 ((𝑞 “ (𝐺 supp 0)) ∈ Fin → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8482, 83syl 17 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8534ffnd 6735 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn Word (𝐸𝐹))
8685ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
8724ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Word (𝐸𝐹) ∈ V)
88 0zd 12621 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 0 ∈ ℤ)
89 snssi 4806 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
9089adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
91 xpss2 5703 . . . . . . . . . . . . . . . . . . . 20 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
92 ssun2 4178 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
93 difxp 6182 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) = (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
9492, 93sseqtrri 4032 . . . . . . . . . . . . . . . . . . . 20 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
9591, 94sstrdi 3995 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
9690, 95syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
97 imassrn 6087 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 “ (𝐺 supp 0)) ⊆ ran 𝑞
9826frnd 6742 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
9998adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
10097, 99sstrid 3994 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹))
101 relxp 5701 . . . . . . . . . . . . . . . . . . . . 21 Rel (𝐸 × 𝐹)
102 relss 5789 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → (Rel (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0))))
103101, 102mpi 20 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0)))
104 relssdmrn 6286 . . . . . . . . . . . . . . . . . . . 20 (Rel (𝑞 “ (𝐺 supp 0)) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
105100, 103, 1043syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
106105sscond 4145 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
10796, 106sstrd 3993 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
108 imass2 6118 . . . . . . . . . . . . . . . . 17 ((𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
110109adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
11178adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → Fun 𝑞)
112 difpreima 7083 . . . . . . . . . . . . . . . . 17 (Fun 𝑞 → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
113111, 112syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
114 cnvimass 6098 . . . . . . . . . . . . . . . . . 18 (𝑞 “ (𝐸 × 𝐹)) ⊆ dom 𝑞
11537ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝑞 = Word (𝐸𝐹))
116114, 115sseqtrid 4025 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × 𝐹)) ⊆ Word (𝐸𝐹))
117 suppssdm 8198 . . . . . . . . . . . . . . . . . . . 20 (𝐺 supp 0) ⊆ dom 𝐺
11834fdmd 6744 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐺 = Word (𝐸𝐹))
119118ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝐺 = Word (𝐸𝐹))
120117, 119sseqtrid 4025 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
121120, 115sseqtrrd 4020 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ dom 𝑞)
122 sseqin2 4222 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 supp 0) ⊆ dom 𝑞 ↔ (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
123122biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((𝐺 supp 0) ⊆ dom 𝑞 → (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
124 dminss 6171 . . . . . . . . . . . . . . . . . . 19 (dom 𝑞 ∩ (𝐺 supp 0)) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0)))
125123, 124eqsstrrdi 4028 . . . . . . . . . . . . . . . . . 18 ((𝐺 supp 0) ⊆ dom 𝑞 → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
126121, 125syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
127116, 126ssdif2d 4147 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
128113, 127eqsstrd 4017 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
129110, 128sstrd 3993 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
130129sselda 3982 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
13186, 87, 88, 130fvdifsupp 8192 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) = 0)
132131oveq1d 7444 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = (0(.g𝑅)(1st ‘(𝑞𝑣))))
13351ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
13426ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
13536, 37sseqtrid 4025 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
136135ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
137136sselda 3982 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
138134, 137ffvelcdmd 7103 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
139 xp1st 8042 . . . . . . . . . . . . . 14 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
140138, 139syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
141133, 140sseldd 3983 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
14217, 5, 18mulg0 19088 . . . . . . . . . . . 12 ((1st ‘(𝑞𝑣)) ∈ 𝐵 → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
143141, 142syl 17 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
144132, 143eqtrd 2776 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
145144mpteq2dva 5240 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 ))
146145oveq2d 7445 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )))
14719grpmndd 18960 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
148147ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → 𝑅 ∈ Mnd)
14912a1i 11 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
1505gsumz 18845 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (𝑞 “ (𝐸 × {𝑓})) ∈ V) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
151148, 149, 150syl2anc 584 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
152146, 151eqtrd 2776 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = 0 )
153152, 4suppss2 8221 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ⊆ ran (𝑞 “ (𝐺 supp 0)))
15484, 153ssfid 9297 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ∈ Fin)
15561, 76, 77, 154isfsuppd 9402 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 )
1568ablcmnd 19802 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
157156adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑅 ∈ CMnd)
15824adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ∈ V)
15985ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝐺 Fn Word (𝐸𝐹))
160158adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ∈ V)
161 0zd 12621 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 0 ∈ ℤ)
162 simpr 484 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
163159, 160, 161, 162fvdifsupp 8192 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (𝐺𝑤) = 0)
164163oveq1d 7444 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
165 eqid 2736 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
166165crngmgp 20234 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
1676, 166syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
168167cmnmndd 19818 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
169168ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (mulGrp‘𝑅) ∈ Mnd)
17017subrgss 20564 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
1713, 170syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐵)
17251, 171unssd 4191 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
173 sswrd 14556 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
174172, 173syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
175174adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ⊆ Word 𝐵)
176175adantr 480 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ⊆ Word 𝐵)
177162eldifad 3962 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word (𝐸𝐹))
178176, 177sseldd 3983 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word 𝐵)
179165, 17mgpbas 20138 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑅))
180179gsumwcl 18848 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
181169, 178, 180syl2anc 584 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
18217, 5, 18mulg0 19088 . . . . . . . . . 10 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
183181, 182syl 17 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
184164, 183eqtrd 2776 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
18579adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ∈ Fin)
18619ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
18734adantr 480 . . . . . . . . . 10 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
188187ffvelcdmda 7102 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (𝐺𝑤) ∈ ℤ)
189168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ Mnd)
190175sselda 3982 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
191189, 190, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
19217, 18, 186, 188, 191mulgcld 19110 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
193117, 118sseqtrid 4025 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
194193adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
19517, 5, 157, 158, 184, 185, 192, 194gsummptres2 33041 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1963adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹 ∈ (SubRing‘𝑅))
19719ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑅 ∈ Grp)
19834ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝐺:Word (𝐸𝐹)⟶ℤ)
199194sselda 3982 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word (𝐸𝐹))
200198, 199ffvelcdmd 7103 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝐺𝑤) ∈ ℤ)
201168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (mulGrp‘𝑅) ∈ Mnd)
202194, 175sstrd 3993 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word 𝐵)
203202sselda 3982 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word 𝐵)
204201, 203, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
20517, 18, 197, 200, 204mulgcld 19110 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
20626adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
207206, 199ffvelcdmd 7103 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝑞𝑤) ∈ (𝐸 × 𝐹))
208 xp2nd 8043 . . . . . . . . 9 ((𝑞𝑤) ∈ (𝐸 × 𝐹) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
209207, 208syl 17 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
210 2fveq3 6909 . . . . . . . . 9 (𝑣 = 𝑤 → (2nd ‘(𝑞𝑣)) = (2nd ‘(𝑞𝑤)))
211210cbvmptv 5253 . . . . . . . 8 (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
21217, 5, 157, 185, 196, 205, 209, 211gsummpt2co 33036 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
213195, 212eqtrd 2776 . . . . . 6 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
214213adantr 480 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
215 elrgspnsubrunlem2.3 . . . . . 6 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
216215ad2antrr 726 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2177ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Ring)
21851ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
21926ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
220135adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
221220sselda 3982 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
222219, 221ffvelcdmd 7103 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
223222, 139syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
224218, 223sseldd 3983 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
225224adantllr 719 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
226196, 170syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹𝐵)
227226sselda 3982 . . . . . . . . . . . . . 14 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑓𝐵)
228227ad4ant13 751 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑓𝐵)
229 elrgspnsubrun.t . . . . . . . . . . . . . 14 · = (.r𝑅)
23017, 18, 229mulgass2 20298 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝐺𝑣) ∈ ℤ ∧ (1st ‘(𝑞𝑣)) ∈ 𝐵𝑓𝐵)) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
231217, 41, 225, 228, 230syl13anc 1374 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
232 oveq2 7437 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg 𝑣))
233 2fveq3 6909 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (1st ‘(𝑞𝑤)) = (1st ‘(𝑞𝑣)))
234 2fveq3 6909 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (2nd ‘(𝑞𝑤)) = (2nd ‘(𝑞𝑣)))
235233, 234oveq12d 7447 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
236232, 235eqeq12d 2752 . . . . . . . . . . . . . . 15 (𝑤 = 𝑣 → (((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) ↔ ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣)))))
237 simpllr 776 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
238236, 237, 40rspcdva 3622 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
23926ffnd 6735 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞 Fn Word (𝐸𝐹))
240239ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞 Fn Word (𝐸𝐹))
241 elpreima 7076 . . . . . . . . . . . . . . . . . . . 20 (𝑞 Fn Word (𝐸𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↔ (𝑣 ∈ Word (𝐸𝐹) ∧ (𝑞𝑣) ∈ (𝐸 × {𝑓}))))
242241simplbda 499 . . . . . . . . . . . . . . . . . . 19 ((𝑞 Fn Word (𝐸𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
243240, 242sylancom 588 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
244 xp2nd 8043 . . . . . . . . . . . . . . . . . 18 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
245243, 244syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
246245elsnd 32536 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
247246adantllr 719 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
248247oveq2d 7445 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))) = ((1st ‘(𝑞𝑣)) · 𝑓))
249238, 248eqtrd 2776 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · 𝑓))
250249oveq2d 7445 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
251231, 250eqtr4d 2779 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
252251mpteq2dva 5240 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))))
253 fveq2 6904 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
254 oveq2 7437 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg 𝑤))
255253, 254oveq12d 7447 . . . . . . . . . . 11 (𝑣 = 𝑤 → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
256255cbvmptv 5253 . . . . . . . . . 10 (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
257252, 256eqtrdi 2792 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
258257oveq2d 7445 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2597ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ Ring)
26012a1i 11 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
26119ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
262187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
263262, 221ffvelcdmd 7103 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
26417, 18, 261, 263, 224mulgcld 19110 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐵)
26546ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
266 0zd 12621 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
267265, 220, 266fmptssfisupp 9430 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
26854adantl 481 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑦𝐵) → (0(.g𝑅)𝑦) = 0 )
26956a1i 11 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ V)
270267, 268, 263, 224, 269fsuppssov1 9420 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
27117, 5, 229, 259, 260, 227, 264, 270gsummulc1 20305 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
272271adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
273157adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ CMnd)
27485ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
275158ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → Word (𝐸𝐹) ∈ V)
276 0zd 12621 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 0 ∈ ℤ)
277135ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
278 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
279278eldifad 3962 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
280277, 279sseldd 3983 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
281 eldif 3960 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ↔ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
282 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0))
283 fvexd 6919 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) ∧ 𝑢 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑢)) ∈ V)
284 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))
285282, 283, 284fnmptd 6707 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
286285adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
287 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
288 2fveq3 6909 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑣)))
289 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
290 fvexd 6919 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ V)
291284, 288, 289, 290fvmptd3 7037 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
292291adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
293239ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑞 Fn Word (𝐸𝐹))
294 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
295293, 294, 242syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
296295, 244syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
297292, 296eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
298286, 287, 297elpreimad 7077 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
299298stoic1a 1772 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ¬ 𝑣 ∈ (𝐺 supp 0))
300299anasss 466 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
301281, 300sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
302280, 301eldifd 3961 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
303274, 275, 276, 302fvdifsupp 8192 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝐺𝑣) = 0)
304303oveq1d 7444 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
305168ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
306175adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → Word (𝐸𝐹) ⊆ Word 𝐵)
307220, 306sstrd 3993 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word 𝐵)
308307ssdifssd 4146 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ⊆ Word 𝐵)
309308sselda 3982 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word 𝐵)
310179gsumwcl 18848 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑣 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
311305, 309, 310syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
31217, 5, 18mulg0 19088 . . . . . . . . . . . . . . 15 (((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
313311, 312syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
314304, 313eqtrd 2776 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
315314ralrimiva 3145 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
316255eqeq1d 2738 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ))
317316cbvralvw 3236 . . . . . . . . . . . . 13 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
318 2fveq3 6909 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑤)))
319318cbvmptv 5253 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
320319, 211eqtr4i 2767 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
321320cnveqi 5883 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
322321imaeq1i 6073 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) = ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓})
323322difeq2i 4122 . . . . . . . . . . . . . 14 ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) = ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))
324323raleqi 3323 . . . . . . . . . . . . 13 (∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
325317, 324bitri 275 . . . . . . . . . . . 12 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
326315, 325sylib 218 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
327326r19.21bi 3250 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
328185adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝐺 supp 0) ∈ Fin)
329328cnvimamptfin 9389 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ∈ Fin)
33019ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
331187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
332220sselda 3982 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word (𝐸𝐹))
333331, 332ffvelcdmd 7103 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑤) ∈ ℤ)
334168ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
335307sselda 3982 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word 𝐵)
336334, 335, 180syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
33717, 18, 330, 333, 336mulgcld 19110 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
338239ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞 Fn Word (𝐸𝐹))
339194ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
340 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑤(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
341 fvexd 6919 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ V)
342340, 341, 319fnmptd 6707 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
343 elpreima 7076 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ↔ (𝑣 ∈ (𝐺 supp 0) ∧ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})))
344343simprbda 498 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
345342, 344sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
346339, 345sseldd 3983 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ Word (𝐸𝐹))
34726ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
348347, 346ffvelcdmd 7103 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
349 1st2nd2 8049 . . . . . . . . . . . . . . . 16 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
350348, 349syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
351348, 139syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
352345, 291syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
353343simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
354342, 353sylancom 588 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
355352, 354eqeltrrd 2841 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
356351, 355opelxpd 5722 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩ ∈ (𝐸 × {𝑓}))
357350, 356eqeltrd 2840 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
358338, 346, 357elpreimad 7077 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
359358ex 412 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))))
360359ssrdv 3988 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
361322, 360eqsstrrid 4022 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
36217, 5, 273, 260, 327, 329, 337, 361gsummptres2 33041 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
363362adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
364258, 272, 3633eqtr3d 2784 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
365364mpteq2dva 5240 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)) = (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
366365oveq2d 7445 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
367214, 216, 3663eqtr4d 2786 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
368155, 367jca 511 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
36961, 75, 368rspcedvd 3623 . 2 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
370 fveq2 6904 . . . . 5 (𝑎 = (𝑞𝑤) → (1st𝑎) = (1st ‘(𝑞𝑤)))
371 fveq2 6904 . . . . 5 (𝑎 = (𝑞𝑤) → (2nd𝑎) = (2nd ‘(𝑞𝑤)))
372370, 371oveq12d 7447 . . . 4 (𝑎 = (𝑞𝑤) → ((1st𝑎) · (2nd𝑎)) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
373372eqeq2d 2747 . . 3 (𝑎 = (𝑞𝑤) → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))))
374 vex 3483 . . . . . . . 8 𝑒 ∈ V
375 vex 3483 . . . . . . . 8 𝑓 ∈ V
376374, 375op1std 8020 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (1st𝑎) = 𝑒)
377374, 375op2ndd 8021 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (2nd𝑎) = 𝑓)
378376, 377oveq12d 7447 . . . . . 6 (𝑎 = ⟨𝑒, 𝑓⟩ → ((1st𝑎) · (2nd𝑎)) = (𝑒 · 𝑓))
379378eqeq2d 2747 . . . . 5 (𝑎 = ⟨𝑒, 𝑓⟩ → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)))
380 simpllr 776 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑒𝐸)
381 simplr 769 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑓𝐹)
382380, 381opelxpd 5722 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ⟨𝑒, 𝑓⟩ ∈ (𝐸 × 𝐹))
383 simpr 484 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
384379, 382, 383rspcedvdw 3624 . . . 4 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
385165, 229mgpplusg 20137 . . . . 5 · = (+g‘(mulGrp‘𝑅))
386167adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ CMnd)
387165subrgsubm 20577 . . . . . . 7 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
3881, 387syl 17 . . . . . 6 (𝜑𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
389388adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
390165subrgsubm 20577 . . . . . . 7 (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
3913, 390syl 17 . . . . . 6 (𝜑𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
392391adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
393 simpr 484 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word (𝐸𝐹))
394385, 386, 389, 392, 393gsumwun 33053 . . . 4 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑒𝐸𝑓𝐹 ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
395384, 394r19.29vva 3215 . . 3 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
396373, 24, 21, 395ac6mapd 32624 . 2 (𝜑 → ∃𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
397369, 396r19.29a 3161 1 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3060  wrex 3069  Vcvv 3479  cdif 3947  cun 3948  cin 3949  wss 3950  {csn 4624  cop 4630   class class class wbr 5141  cmpt 5223   × cxp 5681  ccnv 5682  dom cdm 5683  ran crn 5684  cima 5686  Rel wrel 5688  Fun wfun 6553   Fn wfn 6554  wf 6555  cfv 6559  (class class class)co 7429  1st c1st 8008  2nd c2nd 8009   supp csupp 8181  m cmap 8862  Fincfn 8981   finSupp cfsupp 9397  0cc0 11151  cz 12609  Word cword 14548  Basecbs 17243  .rcmulr 17294  0gc0g 17480   Σg cgsu 17481  Mndcmnd 18743  SubMndcsubmnd 18791  Grpcgrp 18947  .gcmg 19081  SubGrpcsubg 19134  CMndccmn 19794  Abelcabl 19795  mulGrpcmgp 20133  Ringcrg 20226  CRingccrg 20227  SubRingcsubrg 20561  RingSpancrgspn 20602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-reg 9628  ax-inf2 9677  ax-ac2 10499  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-isom 6568  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-of 7694  df-om 7884  df-1st 8010  df-2nd 8011  df-supp 8182  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-er 8741  df-map 8864  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-fsupp 9398  df-oi 9546  df-r1 9800  df-rank 9801  df-card 9975  df-ac 10152  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-n0 12523  df-xnn0 12596  df-z 12610  df-uz 12875  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-word 14549  df-lsw 14597  df-concat 14605  df-s1 14630  df-substr 14675  df-pfx 14705  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-ress 17271  df-plusg 17306  df-mulr 17307  df-0g 17482  df-gsum 17483  df-mre 17625  df-mrc 17626  df-acs 17628  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-mhm 18792  df-submnd 18793  df-grp 18950  df-minusg 18951  df-mulg 19082  df-subg 19137  df-ghm 19227  df-cntz 19331  df-cmn 19796  df-abl 19797  df-mgp 20134  df-rng 20146  df-ur 20175  df-ring 20228  df-cring 20229  df-subrg 20562
This theorem is referenced by:  elrgspnsubrun  33241
  Copyright terms: Public domain W3C validator