Step | Hyp | Ref
| Expression |
1 | | elrgspnsubrun.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (SubRing‘𝑅)) |
2 | 1 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → 𝐸 ∈ (SubRing‘𝑅)) |
3 | | elrgspnsubrun.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝑅)) |
4 | 3 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → 𝐹 ∈ (SubRing‘𝑅)) |
5 | | elrgspnsubrun.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
6 | | elrgspnsubrun.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CRing) |
7 | 6 | crngringd 20239 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | 7 | ringabld 20272 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Abel) |
9 | 8 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → 𝑅 ∈ Abel) |
10 | | vex 3483 |
. . . . . . . . 9
⊢ 𝑞 ∈ V |
11 | 10 | cnvex 7943 |
. . . . . . . 8
⊢ ◡𝑞 ∈ V |
12 | 11 | imaex 7932 |
. . . . . . 7
⊢ (◡𝑞 “ (𝐸 × {𝑓})) ∈ V |
13 | 12 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (◡𝑞 “ (𝐸 × {𝑓})) ∈ V) |
14 | | subrgsubg 20569 |
. . . . . . . 8
⊢ (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubGrp‘𝑅)) |
15 | 1, 14 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ (SubGrp‘𝑅)) |
16 | 15 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → 𝐸 ∈ (SubGrp‘𝑅)) |
17 | | elrgspnsubrun.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
18 | | eqid 2736 |
. . . . . . . 8
⊢
(.g‘𝑅) = (.g‘𝑅) |
19 | 6 | crnggrpd 20240 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Grp) |
20 | 19 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp) |
21 | 1, 3 | xpexd 7767 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸 × 𝐹) ∈ V) |
22 | 1, 3 | unexd 7770 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
23 | | wrdexg 14558 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 ∪ 𝐹) ∈ V → Word (𝐸 ∪ 𝐹) ∈ V) |
24 | 22, 23 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Word (𝐸 ∪ 𝐹) ∈ V) |
25 | 21, 24 | elmapd 8876 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹)) ↔ 𝑞:Word (𝐸 ∪ 𝐹)⟶(𝐸 × 𝐹))) |
26 | 25 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → 𝑞:Word (𝐸 ∪ 𝐹)⟶(𝐸 × 𝐹)) |
27 | 26 | ffund 6738 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → Fun 𝑞) |
28 | 27 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → Fun 𝑞) |
29 | | fvimacnvi 7070 |
. . . . . . . . . 10
⊢ ((Fun
𝑞 ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝑞‘𝑣) ∈ (𝐸 × {𝑓})) |
30 | 28, 29 | sylancom 588 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝑞‘𝑣) ∈ (𝐸 × {𝑓})) |
31 | | xp1st 8042 |
. . . . . . . . 9
⊢ ((𝑞‘𝑣) ∈ (𝐸 × {𝑓}) → (1st ‘(𝑞‘𝑣)) ∈ 𝐸) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞‘𝑣)) ∈ 𝐸) |
33 | 16 | adantr 480 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝐸 ∈ (SubGrp‘𝑅)) |
34 | | elrgspnsubrunlem2.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:Word (𝐸 ∪ 𝐹)⟶ℤ) |
35 | 34 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸 ∪ 𝐹)⟶ℤ) |
36 | | cnvimass 6098 |
. . . . . . . . . . 11
⊢ (◡𝑞 “ (𝐸 × {𝑓})) ⊆ dom 𝑞 |
37 | 26 | fdmd 6744 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → dom 𝑞 = Word (𝐸 ∪ 𝐹)) |
38 | 37 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → dom 𝑞 = Word (𝐸 ∪ 𝐹)) |
39 | 36, 38 | sseqtrid 4025 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸 ∪ 𝐹)) |
40 | 39 | sselda 3982 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸 ∪ 𝐹)) |
41 | 35, 40 | ffvelcdmd 7103 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝐺‘𝑣) ∈ ℤ) |
42 | 17, 18, 20, 32, 33, 41 | subgmulgcld 33033 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) ∈ 𝐸) |
43 | 42 | fmpttd 7133 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))):(◡𝑞 “ (𝐸 × {𝑓}))⟶𝐸) |
44 | 34 | feqmptd 6975 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ (𝐺‘𝑣))) |
45 | | elrgspnsubrunlem2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 finSupp 0) |
46 | 44, 45 | eqbrtrrd 5165 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ (𝐺‘𝑣)) finSupp 0) |
47 | 46 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ (𝐺‘𝑣)) finSupp 0) |
48 | | 0zd 12621 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → 0 ∈ ℤ) |
49 | 47, 39, 48 | fmptssfisupp 9430 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺‘𝑣)) finSupp 0) |
50 | 17 | subrgss 20564 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ⊆ 𝐵) |
51 | 1, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
52 | 51 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → 𝐸 ⊆ 𝐵) |
53 | 52 | sselda 3982 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑦 ∈ 𝐸) → 𝑦 ∈ 𝐵) |
54 | 17, 5, 18 | mulg0 19088 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → (0(.g‘𝑅)𝑦) = 0 ) |
55 | 53, 54 | syl 17 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑦 ∈ 𝐸) → (0(.g‘𝑅)𝑦) = 0 ) |
56 | 5 | fvexi 6918 |
. . . . . . . 8
⊢ 0 ∈
V |
57 | 56 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → 0 ∈ V) |
58 | 49, 55, 41, 32, 57 | fsuppssov1 9420 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))) finSupp 0 ) |
59 | 5, 9, 13, 16, 43, 58 | gsumsubgcl 19934 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) ∈ 𝐸) |
60 | 59 | fmpttd 7133 |
. . . 4
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))):𝐹⟶𝐸) |
61 | 2, 4, 60 | elmapdd 8877 |
. . 3
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) ∈ (𝐸 ↑m 𝐹)) |
62 | | breq1 5144 |
. . . . 5
⊢ (𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) → (𝑝 finSupp 0 ↔ (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) finSupp 0 )) |
63 | 62 | adantl 481 |
. . . 4
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) → (𝑝 finSupp 0 ↔ (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) finSupp 0 )) |
64 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑓((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) |
65 | | nfmpt1 5248 |
. . . . . . . . 9
⊢
Ⅎ𝑓(𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) |
66 | 65 | nfeq2 2922 |
. . . . . . . 8
⊢
Ⅎ𝑓 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) |
67 | 64, 66 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑓(((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) |
68 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) → 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) |
69 | | ovexd 7464 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) ∧ 𝑓 ∈ 𝐹) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) ∈ V) |
70 | 68, 69 | fvmpt2d 7027 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) ∧ 𝑓 ∈ 𝐹) → (𝑝‘𝑓) = (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) |
71 | 70 | oveq1d 7444 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) ∧ 𝑓 ∈ 𝐹) → ((𝑝‘𝑓) · 𝑓) = ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓)) |
72 | 67, 71 | mpteq2da 5238 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) → (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)) = (𝑓 ∈ 𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓))) |
73 | 72 | oveq2d 7445 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) → (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))) = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓)))) |
74 | 73 | eqeq2d 2747 |
. . . 4
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) → (𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓))))) |
75 | 63, 74 | anbi12d 632 |
. . 3
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑝 = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) → ((𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓)))) ↔ ((𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓)))))) |
76 | 56 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → 0 ∈ V) |
77 | 60 | ffund 6738 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → Fun (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))))) |
78 | 27 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → Fun 𝑞) |
79 | 45 | fsuppimpd 9405 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 supp 0) ∈ Fin) |
80 | 79 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → (𝐺 supp 0) ∈ Fin) |
81 | | imafi 9349 |
. . . . . . . 8
⊢ ((Fun
𝑞 ∧ (𝐺 supp 0) ∈ Fin) → (𝑞 “ (𝐺 supp 0)) ∈ Fin) |
82 | 78, 80, 81 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → (𝑞 “ (𝐺 supp 0)) ∈ Fin) |
83 | | rnfi 9376 |
. . . . . . 7
⊢ ((𝑞 “ (𝐺 supp 0)) ∈ Fin → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin) |
84 | 82, 83 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin) |
85 | 34 | ffnd 6735 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 Fn Word (𝐸 ∪ 𝐹)) |
86 | 85 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝐺 Fn Word (𝐸 ∪ 𝐹)) |
87 | 24 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → Word (𝐸 ∪ 𝐹) ∈ V) |
88 | | 0zd 12621 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 0 ∈
ℤ) |
89 | | snssi 4806 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) |
90 | 89 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) |
91 | | xpss2 5703 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))) |
92 | | ssun2 4178 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))) |
93 | | difxp 6182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) = (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))) |
94 | 92, 93 | sseqtrri 4032 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) |
95 | 91, 94 | sstrdi 3995 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))) |
96 | 90, 95 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))) |
97 | | imassrn 6087 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 “ (𝐺 supp 0)) ⊆ ran 𝑞 |
98 | 26 | frnd 6742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → ran 𝑞 ⊆ (𝐸 × 𝐹)) |
99 | 98 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ran 𝑞 ⊆ (𝐸 × 𝐹)) |
100 | 97, 99 | sstrid 3994 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹)) |
101 | | relxp 5701 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ Rel
(𝐸 × 𝐹) |
102 | | relss 5789 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → (Rel (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0)))) |
103 | 101, 102 | mpi 20 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0))) |
104 | | relssdmrn 6286 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Rel
(𝑞 “ (𝐺 supp 0)) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) |
105 | 100, 103,
104 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) |
106 | 105 | sscond 4145 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) |
107 | 96, 106 | sstrd 3993 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) |
108 | | imass2 6118 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ (◡𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))) |
109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ (◡𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))) |
110 | 109 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ (◡𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))) |
111 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → Fun 𝑞) |
112 | | difpreima 7083 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
𝑞 → (◡𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((◡𝑞 “ (𝐸 × 𝐹)) ∖ (◡𝑞 “ (𝑞 “ (𝐺 supp 0))))) |
113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (◡𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((◡𝑞 “ (𝐸 × 𝐹)) ∖ (◡𝑞 “ (𝑞 “ (𝐺 supp 0))))) |
114 | | cnvimass 6098 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑞 “ (𝐸 × 𝐹)) ⊆ dom 𝑞 |
115 | 37 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝑞 = Word (𝐸 ∪ 𝐹)) |
116 | 114, 115 | sseqtrid 4025 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (◡𝑞 “ (𝐸 × 𝐹)) ⊆ Word (𝐸 ∪ 𝐹)) |
117 | | suppssdm 8198 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺 supp 0) ⊆ dom 𝐺 |
118 | 34 | fdmd 6744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom 𝐺 = Word (𝐸 ∪ 𝐹)) |
119 | 118 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝐺 = Word (𝐸 ∪ 𝐹)) |
120 | 117, 119 | sseqtrid 4025 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ Word (𝐸 ∪ 𝐹)) |
121 | 120, 115 | sseqtrrd 4020 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ dom 𝑞) |
122 | | sseqin2 4222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 supp 0) ⊆ dom 𝑞 ↔ (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0)) |
123 | 122 | biimpi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 supp 0) ⊆ dom 𝑞 → (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0)) |
124 | | dminss 6171 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
𝑞 ∩ (𝐺 supp 0)) ⊆ (◡𝑞 “ (𝑞 “ (𝐺 supp 0))) |
125 | 123, 124 | eqsstrrdi 4028 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 supp 0) ⊆ dom 𝑞 → (𝐺 supp 0) ⊆ (◡𝑞 “ (𝑞 “ (𝐺 supp 0)))) |
126 | 121, 125 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ (◡𝑞 “ (𝑞 “ (𝐺 supp 0)))) |
127 | 116, 126 | ssdif2d 4147 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((◡𝑞 “ (𝐸 × 𝐹)) ∖ (◡𝑞 “ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) |
128 | 113, 127 | eqsstrd 4017 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (◡𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) |
129 | 110, 128 | sstrd 3993 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) |
130 | 129 | sselda 3982 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) |
131 | 86, 87, 88, 130 | fvdifsupp 8192 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝐺‘𝑣) = 0) |
132 | 131 | oveq1d 7444 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) = (0(.g‘𝑅)(1st ‘(𝑞‘𝑣)))) |
133 | 51 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝐸 ⊆ 𝐵) |
134 | 26 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸 ∪ 𝐹)⟶(𝐸 × 𝐹)) |
135 | 36, 37 | sseqtrid 4025 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸 ∪ 𝐹)) |
136 | 135 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸 ∪ 𝐹)) |
137 | 136 | sselda 3982 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸 ∪ 𝐹)) |
138 | 134, 137 | ffvelcdmd 7103 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝑞‘𝑣) ∈ (𝐸 × 𝐹)) |
139 | | xp1st 8042 |
. . . . . . . . . . . . . 14
⊢ ((𝑞‘𝑣) ∈ (𝐸 × 𝐹) → (1st ‘(𝑞‘𝑣)) ∈ 𝐸) |
140 | 138, 139 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞‘𝑣)) ∈ 𝐸) |
141 | 133, 140 | sseldd 3983 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞‘𝑣)) ∈ 𝐵) |
142 | 17, 5, 18 | mulg0 19088 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝑞‘𝑣)) ∈ 𝐵 → (0(.g‘𝑅)(1st ‘(𝑞‘𝑣))) = 0 ) |
143 | 141, 142 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (0(.g‘𝑅)(1st ‘(𝑞‘𝑣))) = 0 ) |
144 | 132, 143 | eqtrd 2776 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) = 0 ) |
145 | 144 | mpteq2dva 5240 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))) = (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) |
146 | 145 | oveq2d 7445 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) = (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ 0 ))) |
147 | 19 | grpmndd 18960 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Mnd) |
148 | 147 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → 𝑅 ∈ Mnd) |
149 | 12 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (◡𝑞 “ (𝐸 × {𝑓})) ∈ V) |
150 | 5 | gsumz 18845 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ (◡𝑞 “ (𝐸 × {𝑓})) ∈ V) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 ) |
151 | 148, 149,
150 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 ) |
152 | 146, 151 | eqtrd 2776 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) = 0 ) |
153 | 152, 4 | suppss2 8221 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → ((𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) supp 0 ) ⊆ ran (𝑞 “ (𝐺 supp 0))) |
154 | 84, 153 | ssfid 9297 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → ((𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) supp 0 ) ∈
Fin) |
155 | 61, 76, 77, 154 | isfsuppd 9402 |
. . . 4
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) finSupp 0 ) |
156 | 8 | ablcmnd 19802 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CMnd) |
157 | 156 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → 𝑅 ∈ CMnd) |
158 | 24 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → Word (𝐸 ∪ 𝐹) ∈ V) |
159 | 85 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → 𝐺 Fn Word (𝐸 ∪ 𝐹)) |
160 | 158 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → Word (𝐸 ∪ 𝐹) ∈ V) |
161 | | 0zd 12621 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → 0 ∈
ℤ) |
162 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) |
163 | 159, 160,
161, 162 | fvdifsupp 8192 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → (𝐺‘𝑤) = 0) |
164 | 163 | oveq1d 7444 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) =
(0(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
165 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
166 | 165 | crngmgp 20234 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
167 | 6, 166 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
168 | 167 | cmnmndd 19818 |
. . . . . . . . . . . 12
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
169 | 168 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → (mulGrp‘𝑅) ∈ Mnd) |
170 | 17 | subrgss 20564 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ⊆ 𝐵) |
171 | 3, 170 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
172 | 51, 171 | unssd 4191 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐸 ∪ 𝐹) ⊆ 𝐵) |
173 | | sswrd 14556 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 ∪ 𝐹) ⊆ 𝐵 → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
174 | 172, 173 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
175 | 174 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
176 | 175 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
177 | 162 | eldifad 3962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word (𝐸 ∪ 𝐹)) |
178 | 176, 177 | sseldd 3983 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word 𝐵) |
179 | 165, 17 | mgpbas 20138 |
. . . . . . . . . . . 12
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
180 | 179 | gsumwcl 18848 |
. . . . . . . . . . 11
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑤 ∈
Word 𝐵) →
((mulGrp‘𝑅)
Σg 𝑤) ∈ 𝐵) |
181 | 169, 178,
180 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → ((mulGrp‘𝑅) Σg
𝑤) ∈ 𝐵) |
182 | 17, 5, 18 | mulg0 19088 |
. . . . . . . . . 10
⊢
(((mulGrp‘𝑅)
Σg 𝑤) ∈ 𝐵 → (0(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = 0 ) |
183 | 181, 182 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) →
(0(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
184 | 164, 183 | eqtrd 2776 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) → ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
185 | 79 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → (𝐺 supp 0) ∈ Fin) |
186 | 19 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝑅 ∈ Grp) |
187 | 34 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → 𝐺:Word (𝐸 ∪ 𝐹)⟶ℤ) |
188 | 187 | ffvelcdmda 7102 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → (𝐺‘𝑤) ∈ ℤ) |
189 | 168 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → (mulGrp‘𝑅) ∈ Mnd) |
190 | 175 | sselda 3982 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝑤 ∈ Word 𝐵) |
191 | 189, 190,
180 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵) |
192 | 17, 18, 186, 188, 191 | mulgcld 19110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵) |
193 | 117, 118 | sseqtrid 4025 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 supp 0) ⊆ Word (𝐸 ∪ 𝐹)) |
194 | 193 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → (𝐺 supp 0) ⊆ Word (𝐸 ∪ 𝐹)) |
195 | 17, 5, 157, 158, 184, 185, 192, 194 | gsummptres2 33041 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
196 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → 𝐹 ∈ (SubRing‘𝑅)) |
197 | 19 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑅 ∈ Grp) |
198 | 34 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝐺:Word (𝐸 ∪ 𝐹)⟶ℤ) |
199 | 194 | sselda 3982 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word (𝐸 ∪ 𝐹)) |
200 | 198, 199 | ffvelcdmd 7103 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝐺‘𝑤) ∈ ℤ) |
201 | 168 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (mulGrp‘𝑅) ∈ Mnd) |
202 | 194, 175 | sstrd 3993 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → (𝐺 supp 0) ⊆ Word 𝐵) |
203 | 202 | sselda 3982 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word 𝐵) |
204 | 201, 203,
180 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((mulGrp‘𝑅) Σg
𝑤) ∈ 𝐵) |
205 | 17, 18, 197, 200, 204 | mulgcld 19110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵) |
206 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑞:Word (𝐸 ∪ 𝐹)⟶(𝐸 × 𝐹)) |
207 | 206, 199 | ffvelcdmd 7103 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝑞‘𝑤) ∈ (𝐸 × 𝐹)) |
208 | | xp2nd 8043 |
. . . . . . . . 9
⊢ ((𝑞‘𝑤) ∈ (𝐸 × 𝐹) → (2nd ‘(𝑞‘𝑤)) ∈ 𝐹) |
209 | 207, 208 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd
‘(𝑞‘𝑤)) ∈ 𝐹) |
210 | | 2fveq3 6909 |
. . . . . . . . 9
⊢ (𝑣 = 𝑤 → (2nd ‘(𝑞‘𝑣)) = (2nd ‘(𝑞‘𝑤))) |
211 | 210 | cbvmptv 5253 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑤))) |
212 | 17, 5, 157, 185, 196, 205, 209, 211 | gsummpt2co 33036 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))))) |
213 | 195, 212 | eqtrd 2776 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))))) |
214 | 213 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))))) |
215 | | elrgspnsubrunlem2.3 |
. . . . . 6
⊢ (𝜑 → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
216 | 215 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
217 | 7 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Ring) |
218 | 51 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝐸 ⊆ 𝐵) |
219 | 26 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸 ∪ 𝐹)⟶(𝐸 × 𝐹)) |
220 | 135 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸 ∪ 𝐹)) |
221 | 220 | sselda 3982 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸 ∪ 𝐹)) |
222 | 219, 221 | ffvelcdmd 7103 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝑞‘𝑣) ∈ (𝐸 × 𝐹)) |
223 | 222, 139 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞‘𝑣)) ∈ 𝐸) |
224 | 218, 223 | sseldd 3983 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞‘𝑣)) ∈ 𝐵) |
225 | 224 | adantllr 719 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞‘𝑣)) ∈ 𝐵) |
226 | 196, 170 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → 𝐹 ⊆ 𝐵) |
227 | 226 | sselda 3982 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → 𝑓 ∈ 𝐵) |
228 | 227 | ad4ant13 751 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑓 ∈ 𝐵) |
229 | | elrgspnsubrun.t |
. . . . . . . . . . . . . 14
⊢ · =
(.r‘𝑅) |
230 | 17, 18, 229 | mulgass2 20298 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ ((𝐺‘𝑣) ∈ ℤ ∧ (1st
‘(𝑞‘𝑣)) ∈ 𝐵 ∧ 𝑓 ∈ 𝐵)) → (((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) · 𝑓) = ((𝐺‘𝑣)(.g‘𝑅)((1st ‘(𝑞‘𝑣)) · 𝑓))) |
231 | 217, 41, 225, 228, 230 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) · 𝑓) = ((𝐺‘𝑣)(.g‘𝑅)((1st ‘(𝑞‘𝑣)) · 𝑓))) |
232 | | oveq2 7437 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑣 → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg
𝑣)) |
233 | | 2fveq3 6909 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑣 → (1st ‘(𝑞‘𝑤)) = (1st ‘(𝑞‘𝑣))) |
234 | | 2fveq3 6909 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑣 → (2nd ‘(𝑞‘𝑤)) = (2nd ‘(𝑞‘𝑣))) |
235 | 233, 234 | oveq12d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑣 → ((1st ‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤))) = ((1st
‘(𝑞‘𝑣)) · (2nd
‘(𝑞‘𝑣)))) |
236 | 232, 235 | eqeq12d 2752 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑣 → (((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤))) ↔ ((mulGrp‘𝑅) Σg
𝑣) = ((1st
‘(𝑞‘𝑣)) · (2nd
‘(𝑞‘𝑣))))) |
237 | | simpllr 776 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) |
238 | 236, 237,
40 | rspcdva 3622 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st
‘(𝑞‘𝑣)) · (2nd
‘(𝑞‘𝑣)))) |
239 | 26 | ffnd 6735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) → 𝑞 Fn Word (𝐸 ∪ 𝐹)) |
240 | 239 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑞 Fn Word (𝐸 ∪ 𝐹)) |
241 | | elpreima 7076 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 Fn Word (𝐸 ∪ 𝐹) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↔ (𝑣 ∈ Word (𝐸 ∪ 𝐹) ∧ (𝑞‘𝑣) ∈ (𝐸 × {𝑓})))) |
242 | 241 | simplbda 499 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑞 Fn Word (𝐸 ∪ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝑞‘𝑣) ∈ (𝐸 × {𝑓})) |
243 | 240, 242 | sylancom 588 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝑞‘𝑣) ∈ (𝐸 × {𝑓})) |
244 | | xp2nd 8043 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞‘𝑣) ∈ (𝐸 × {𝑓}) → (2nd ‘(𝑞‘𝑣)) ∈ {𝑓}) |
245 | 243, 244 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞‘𝑣)) ∈ {𝑓}) |
246 | 245 | elsnd 32536 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞‘𝑣)) = 𝑓) |
247 | 246 | adantllr 719 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞‘𝑣)) = 𝑓) |
248 | 247 | oveq2d 7445 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((1st ‘(𝑞‘𝑣)) · (2nd
‘(𝑞‘𝑣))) = ((1st
‘(𝑞‘𝑣)) · 𝑓)) |
249 | 238, 248 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st
‘(𝑞‘𝑣)) · 𝑓)) |
250 | 249 | oveq2d 7445 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺‘𝑣)(.g‘𝑅)((1st ‘(𝑞‘𝑣)) · 𝑓))) |
251 | 231, 250 | eqtr4d 2779 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) · 𝑓) = ((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣))) |
252 | 251 | mpteq2dva 5240 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) · 𝑓)) = (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)))) |
253 | | fveq2 6904 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑤 → (𝐺‘𝑣) = (𝐺‘𝑤)) |
254 | | oveq2 7437 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg
𝑤)) |
255 | 253, 254 | oveq12d 7447 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑤 → ((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
256 | 255 | cbvmptv 5253 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
257 | 252, 256 | eqtrdi 2792 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) · 𝑓)) = (𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) |
258 | 257 | oveq2d 7445 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) · 𝑓))) = (𝑅 Σg (𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
259 | 7 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → 𝑅 ∈ Ring) |
260 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (◡𝑞 “ (𝐸 × {𝑓})) ∈ V) |
261 | 19 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp) |
262 | 187 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸 ∪ 𝐹)⟶ℤ) |
263 | 262, 221 | ffvelcdmd 7103 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝐺‘𝑣) ∈ ℤ) |
264 | 17, 18, 261, 263, 224 | mulgcld 19110 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) ∈ 𝐵) |
265 | 46 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ Word (𝐸 ∪ 𝐹) ↦ (𝐺‘𝑣)) finSupp 0) |
266 | | 0zd 12621 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → 0 ∈ ℤ) |
267 | 265, 220,
266 | fmptssfisupp 9430 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺‘𝑣)) finSupp 0) |
268 | 54 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑦 ∈ 𝐵) → (0(.g‘𝑅)𝑦) = 0 ) |
269 | 56 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → 0 ∈ V) |
270 | 267, 268,
263, 224, 269 | fsuppssov1 9420 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))) finSupp 0 ) |
271 | 17, 5, 229, 259, 260, 227, 264, 270 | gsummulc1 20305 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓)) |
272 | 271 | adantlr 715 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓)) |
273 | 157 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → 𝑅 ∈ CMnd) |
274 | 85 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → 𝐺 Fn Word (𝐸 ∪ 𝐹)) |
275 | 158 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → Word (𝐸 ∪ 𝐹) ∈ V) |
276 | | 0zd 12621 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → 0 ∈
ℤ) |
277 | 135 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸 ∪ 𝐹)) |
278 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) |
279 | 278 | eldifad 3962 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) |
280 | 277, 279 | sseldd 3983 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → 𝑣 ∈ Word (𝐸 ∪ 𝐹)) |
281 | | eldif 3960 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) ↔ (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) |
282 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑢(((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) |
283 | | fvexd 6919 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) ∧ 𝑢 ∈ (𝐺 supp 0)) → (2nd
‘(𝑞‘𝑢)) ∈ V) |
284 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) = (𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) |
285 | 282, 283,
284 | fnmptd 6707 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) Fn (𝐺 supp 0)) |
286 | 285 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) Fn (𝐺 supp 0)) |
287 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0)) |
288 | | 2fveq3 6909 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = 𝑣 → (2nd ‘(𝑞‘𝑢)) = (2nd ‘(𝑞‘𝑣))) |
289 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0)) |
290 | | fvexd 6919 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd
‘(𝑞‘𝑣)) ∈ V) |
291 | 284, 288,
289, 290 | fvmptd3 7037 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢)))‘𝑣) = (2nd ‘(𝑞‘𝑣))) |
292 | 291 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢)))‘𝑣) = (2nd ‘(𝑞‘𝑣))) |
293 | 239 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑞 Fn Word (𝐸 ∪ 𝐹)) |
294 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) |
295 | 293, 294,
242 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑞‘𝑣) ∈ (𝐸 × {𝑓})) |
296 | 295, 244 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd
‘(𝑞‘𝑣)) ∈ {𝑓}) |
297 | 292, 296 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢)))‘𝑣) ∈ {𝑓}) |
298 | 286, 287,
297 | elpreimad 7077 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) |
299 | 298 | stoic1a 1772 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) ∧ ¬ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → ¬ 𝑣 ∈ (𝐺 supp 0)) |
300 | 299 | anasss 466 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0)) |
301 | 281, 300 | sylan2b 594 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0)) |
302 | 280, 301 | eldifd 3961 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → 𝑣 ∈ (Word (𝐸 ∪ 𝐹) ∖ (𝐺 supp 0))) |
303 | 274, 275,
276, 302 | fvdifsupp 8192 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → (𝐺‘𝑣) = 0) |
304 | 303 | oveq1d 7444 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → ((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) =
(0(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣))) |
305 | 168 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd) |
306 | 175 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
307 | 220, 306 | sstrd 3993 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (◡𝑞 “ (𝐸 × {𝑓})) ⊆ Word 𝐵) |
308 | 307 | ssdifssd 4146 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) ⊆ Word 𝐵) |
309 | 308 | sselda 3982 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → 𝑣 ∈ Word 𝐵) |
310 | 179 | gsumwcl 18848 |
. . . . . . . . . . . . . . . 16
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑣 ∈
Word 𝐵) →
((mulGrp‘𝑅)
Σg 𝑣) ∈ 𝐵) |
311 | 305, 309,
310 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵) |
312 | 17, 5, 18 | mulg0 19088 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝑅)
Σg 𝑣) ∈ 𝐵 → (0(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑣)) = 0 ) |
313 | 311, 312 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → (0(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑣)) = 0 ) |
314 | 304, 313 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))) → ((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ) |
315 | 314 | ralrimiva 3145 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → ∀𝑣 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ) |
316 | 255 | eqeq1d 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑤 → (((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )) |
317 | 316 | cbvralvw 3236 |
. . . . . . . . . . . . 13
⊢
(∀𝑣 ∈
((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
318 | | 2fveq3 6909 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = 𝑤 → (2nd ‘(𝑞‘𝑢)) = (2nd ‘(𝑞‘𝑤))) |
319 | 318 | cbvmptv 5253 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑤))) |
320 | 319, 211 | eqtr4i 2767 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) |
321 | 320 | cnveqi 5883 |
. . . . . . . . . . . . . . . 16
⊢ ◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) = ◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) |
322 | 321 | imaeq1i 6073 |
. . . . . . . . . . . . . . 15
⊢ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}) = (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) |
323 | 322 | difeq2i 4122 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) = ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓})) |
324 | 323 | raleqi 3323 |
. . . . . . . . . . . . 13
⊢
(∀𝑤 ∈
((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ↔ ∀𝑤 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}))((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
325 | 317, 324 | bitri 275 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}))((𝐺‘𝑣)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}))((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
326 | 315, 325 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → ∀𝑤 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}))((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
327 | 326 | r19.21bi 3250 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ ((◡𝑞 “ (𝐸 × {𝑓})) ∖ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}))) → ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
328 | 185 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (𝐺 supp 0) ∈ Fin) |
329 | 328 | cnvimamptfin 9389 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ∈ Fin) |
330 | 19 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp) |
331 | 187 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸 ∪ 𝐹)⟶ℤ) |
332 | 220 | sselda 3982 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word (𝐸 ∪ 𝐹)) |
333 | 331, 332 | ffvelcdmd 7103 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (𝐺‘𝑤) ∈ ℤ) |
334 | 168 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd) |
335 | 307 | sselda 3982 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word 𝐵) |
336 | 334, 335,
180 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵) |
337 | 17, 18, 330, 333, 336 | mulgcld 19110 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) → ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵) |
338 | 239 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → 𝑞 Fn Word (𝐸 ∪ 𝐹)) |
339 | 194 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → (𝐺 supp 0) ⊆ Word (𝐸 ∪ 𝐹)) |
340 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤(((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) |
341 | | fvexd 6919 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd
‘(𝑞‘𝑤)) ∈ V) |
342 | 340, 341,
319 | fnmptd 6707 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) Fn (𝐺 supp 0)) |
343 | | elpreima 7076 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) Fn (𝐺 supp 0) → (𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}) ↔ (𝑣 ∈ (𝐺 supp 0) ∧ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢)))‘𝑣) ∈ {𝑓}))) |
344 | 343 | simprbda 498 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0)) |
345 | 342, 344 | sylancom 588 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0)) |
346 | 339, 345 | sseldd 3983 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → 𝑣 ∈ Word (𝐸 ∪ 𝐹)) |
347 | 26 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → 𝑞:Word (𝐸 ∪ 𝐹)⟶(𝐸 × 𝐹)) |
348 | 347, 346 | ffvelcdmd 7103 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → (𝑞‘𝑣) ∈ (𝐸 × 𝐹)) |
349 | | 1st2nd2 8049 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑞‘𝑣) ∈ (𝐸 × 𝐹) → (𝑞‘𝑣) = 〈(1st ‘(𝑞‘𝑣)), (2nd ‘(𝑞‘𝑣))〉) |
350 | 348, 349 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → (𝑞‘𝑣) = 〈(1st ‘(𝑞‘𝑣)), (2nd ‘(𝑞‘𝑣))〉) |
351 | 348, 139 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → (1st ‘(𝑞‘𝑣)) ∈ 𝐸) |
352 | 345, 291 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢)))‘𝑣) = (2nd ‘(𝑞‘𝑣))) |
353 | 343 | simplbda 499 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢)))‘𝑣) ∈ {𝑓}) |
354 | 342, 353 | sylancom 588 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢)))‘𝑣) ∈ {𝑓}) |
355 | 352, 354 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → (2nd ‘(𝑞‘𝑣)) ∈ {𝑓}) |
356 | 351, 355 | opelxpd 5722 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → 〈(1st
‘(𝑞‘𝑣)), (2nd
‘(𝑞‘𝑣))〉 ∈ (𝐸 × {𝑓})) |
357 | 350, 356 | eqeltrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → (𝑞‘𝑣) ∈ (𝐸 × {𝑓})) |
358 | 338, 346,
357 | elpreimad 7077 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) ∧ 𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓})) → 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓}))) |
359 | 358 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (𝑣 ∈ (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}) → 𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})))) |
360 | 359 | ssrdv 3988 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (◡(𝑢 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑢))) “ {𝑓}) ⊆ (◡𝑞 “ (𝐸 × {𝑓}))) |
361 | 322, 360 | eqsstrrid 4022 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ⊆ (◡𝑞 “ (𝐸 × {𝑓}))) |
362 | 17, 5, 273, 260, 327, 329, 337, 361 | gsummptres2 33041 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ 𝑓 ∈ 𝐹) → (𝑅 Σg (𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
363 | 362 | adantlr 715 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → (𝑅 Σg (𝑤 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
364 | 258, 272,
363 | 3eqtr3d 2784 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) ∧ 𝑓 ∈ 𝐹) → ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓) = (𝑅 Σg (𝑤 ∈ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
365 | 364 | mpteq2dva 5240 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → (𝑓 ∈ 𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓)) = (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
366 | 365 | oveq2d 7445 |
. . . . 5
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓))) = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑤 ∈ (◡(𝑣 ∈ (𝐺 supp 0) ↦ (2nd
‘(𝑞‘𝑣))) “ {𝑓}) ↦ ((𝐺‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))))) |
367 | 214, 216,
366 | 3eqtr4d 2786 |
. . . 4
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓)))) |
368 | 155, 367 | jca 511 |
. . 3
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → ((𝑓 ∈ 𝐹 ↦ (𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣)))))) finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (◡𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺‘𝑣)(.g‘𝑅)(1st ‘(𝑞‘𝑣))))) · 𝑓))))) |
369 | 61, 75, 368 | rspcedvd 3623 |
. 2
⊢ (((𝜑 ∧ 𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))) ∧ ∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) → ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) |
370 | | fveq2 6904 |
. . . . 5
⊢ (𝑎 = (𝑞‘𝑤) → (1st ‘𝑎) = (1st
‘(𝑞‘𝑤))) |
371 | | fveq2 6904 |
. . . . 5
⊢ (𝑎 = (𝑞‘𝑤) → (2nd ‘𝑎) = (2nd
‘(𝑞‘𝑤))) |
372 | 370, 371 | oveq12d 7447 |
. . . 4
⊢ (𝑎 = (𝑞‘𝑤) → ((1st ‘𝑎) · (2nd
‘𝑎)) =
((1st ‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) |
373 | 372 | eqeq2d 2747 |
. . 3
⊢ (𝑎 = (𝑞‘𝑤) → (((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘𝑎) ·
(2nd ‘𝑎))
↔ ((mulGrp‘𝑅)
Σg 𝑤) = ((1st ‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤))))) |
374 | | vex 3483 |
. . . . . . . 8
⊢ 𝑒 ∈ V |
375 | | vex 3483 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
376 | 374, 375 | op1std 8020 |
. . . . . . 7
⊢ (𝑎 = 〈𝑒, 𝑓〉 → (1st ‘𝑎) = 𝑒) |
377 | 374, 375 | op2ndd 8021 |
. . . . . . 7
⊢ (𝑎 = 〈𝑒, 𝑓〉 → (2nd ‘𝑎) = 𝑓) |
378 | 376, 377 | oveq12d 7447 |
. . . . . 6
⊢ (𝑎 = 〈𝑒, 𝑓〉 → ((1st ‘𝑎) · (2nd
‘𝑎)) = (𝑒 · 𝑓)) |
379 | 378 | eqeq2d 2747 |
. . . . 5
⊢ (𝑎 = 〈𝑒, 𝑓〉 → (((mulGrp‘𝑅) Σg
𝑤) = ((1st
‘𝑎) ·
(2nd ‘𝑎))
↔ ((mulGrp‘𝑅)
Σg 𝑤) = (𝑒 · 𝑓))) |
380 | | simpllr 776 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) ∧ 𝑒 ∈ 𝐸) ∧ 𝑓 ∈ 𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑒 ∈ 𝐸) |
381 | | simplr 769 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) ∧ 𝑒 ∈ 𝐸) ∧ 𝑓 ∈ 𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑓 ∈ 𝐹) |
382 | 380, 381 | opelxpd 5722 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) ∧ 𝑒 ∈ 𝐸) ∧ 𝑓 ∈ 𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 〈𝑒, 𝑓〉 ∈ (𝐸 × 𝐹)) |
383 | | simpr 484 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) ∧ 𝑒 ∈ 𝐸) ∧ 𝑓 ∈ 𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) |
384 | 379, 382,
383 | rspcedvdw 3624 |
. . . 4
⊢
(((((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) ∧ 𝑒 ∈ 𝐸) ∧ 𝑓 ∈ 𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘𝑎) ·
(2nd ‘𝑎))) |
385 | 165, 229 | mgpplusg 20137 |
. . . . 5
⊢ · =
(+g‘(mulGrp‘𝑅)) |
386 | 167 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → (mulGrp‘𝑅) ∈ CMnd) |
387 | 165 | subrgsubm 20577 |
. . . . . . 7
⊢ (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅))) |
388 | 1, 387 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅))) |
389 | 388 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅))) |
390 | 165 | subrgsubm 20577 |
. . . . . . 7
⊢ (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅))) |
391 | 3, 390 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅))) |
392 | 391 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅))) |
393 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝑤 ∈ Word (𝐸 ∪ 𝐹)) |
394 | 385, 386,
389, 392, 393 | gsumwun 33053 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → ∃𝑒 ∈ 𝐸 ∃𝑓 ∈ 𝐹 ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) |
395 | 384, 394 | r19.29vva 3215 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘𝑎) ·
(2nd ‘𝑎))) |
396 | 373, 24, 21, 395 | ac6mapd 32624 |
. 2
⊢ (𝜑 → ∃𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸 ∪ 𝐹))∀𝑤 ∈ Word (𝐸 ∪ 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st
‘(𝑞‘𝑤)) · (2nd
‘(𝑞‘𝑤)))) |
397 | 369, 396 | r19.29a 3161 |
1
⊢ (𝜑 → ∃𝑝 ∈ (𝐸 ↑m 𝐹)(𝑝 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑓 ∈ 𝐹 ↦ ((𝑝‘𝑓) · 𝑓))))) |