Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem2 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem2 33196
Description: Lemma for elrgspnsubrun 33197, second direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem2.x (𝜑𝑋𝐵)
elrgspnsubrunlem2.1 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
elrgspnsubrunlem2.2 (𝜑𝐺 finSupp 0)
elrgspnsubrunlem2.3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
Assertion
Ref Expression
elrgspnsubrunlem2 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Distinct variable groups:   0 ,𝑓,𝑝,𝑤   · ,𝑓,𝑝,𝑤   𝐵,𝑓,𝑤   𝑓,𝐸,𝑝,𝑤   𝑓,𝐹,𝑝,𝑤   𝑓,𝐺,𝑝,𝑤   𝑅,𝑓,𝑝,𝑤   𝑋,𝑝   𝜑,𝑓,𝑝,𝑤
Allowed substitution hints:   𝐵(𝑝)   𝑁(𝑤,𝑓,𝑝)   𝑋(𝑤,𝑓)

Proof of Theorem elrgspnsubrunlem2
Dummy variables 𝑞 𝑣 𝑦 𝑎 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspnsubrun.e . . . . 5 (𝜑𝐸 ∈ (SubRing‘𝑅))
21ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐸 ∈ (SubRing‘𝑅))
3 elrgspnsubrun.f . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝑅))
43ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐹 ∈ (SubRing‘𝑅))
5 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
6 elrgspnsubrun.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
76crngringd 20212 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
87ringabld 20249 . . . . . . 7 (𝜑𝑅 ∈ Abel)
98ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝑅 ∈ Abel)
10 vex 3467 . . . . . . . . 9 𝑞 ∈ V
1110cnvex 7929 . . . . . . . 8 𝑞 ∈ V
1211imaex 7918 . . . . . . 7 (𝑞 “ (𝐸 × {𝑓})) ∈ V
1312a1i 11 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
14 subrgsubg 20546 . . . . . . . 8 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubGrp‘𝑅))
151, 14syl 17 . . . . . . 7 (𝜑𝐸 ∈ (SubGrp‘𝑅))
1615ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸 ∈ (SubGrp‘𝑅))
17 elrgspnsubrun.b . . . . . . . 8 𝐵 = (Base‘𝑅)
18 eqid 2734 . . . . . . . 8 (.g𝑅) = (.g𝑅)
196crnggrpd 20213 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2019ad4antr 732 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
211, 3xpexd 7753 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 × 𝐹) ∈ V)
221, 3unexd 7756 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ∈ V)
23 wrdexg 14545 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
2422, 23syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ∈ V)
2521, 24elmapd 8862 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹)) ↔ 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹)))
2625biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
2726ffund 6720 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Fun 𝑞)
2827ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Fun 𝑞)
29 fvimacnvi 7052 . . . . . . . . . 10 ((Fun 𝑞𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
3028, 29sylancom 588 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
31 xp1st 8028 . . . . . . . . 9 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3230, 31syl 17 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3316adantr 480 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸 ∈ (SubGrp‘𝑅))
34 elrgspnsubrunlem2.1 . . . . . . . . . 10 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
3534ad4antr 732 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
36 cnvimass 6080 . . . . . . . . . . 11 (𝑞 “ (𝐸 × {𝑓})) ⊆ dom 𝑞
3726fdmd 6726 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → dom 𝑞 = Word (𝐸𝐹))
3837ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → dom 𝑞 = Word (𝐸𝐹))
3936, 38sseqtrid 4006 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
4039sselda 3963 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
4135, 40ffvelcdmd 7085 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
4217, 18, 20, 32, 33, 41subgmulgcld 32992 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐸)
4342fmpttd 7115 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))):(𝑞 “ (𝐸 × {𝑓}))⟶𝐸)
4434feqmptd 6957 . . . . . . . . . 10 (𝜑𝐺 = (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)))
45 elrgspnsubrunlem2.2 . . . . . . . . . 10 (𝜑𝐺 finSupp 0)
4644, 45eqbrtrrd 5147 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
48 0zd 12608 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
4947, 39, 48fmptssfisupp 9416 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
5017subrgss 20541 . . . . . . . . . . 11 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
511, 50syl 17 . . . . . . . . . 10 (𝜑𝐸𝐵)
5251ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸𝐵)
5352sselda 3963 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → 𝑦𝐵)
5417, 5, 18mulg0 19062 . . . . . . . 8 (𝑦𝐵 → (0(.g𝑅)𝑦) = 0 )
5553, 54syl 17 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → (0(.g𝑅)𝑦) = 0 )
565fvexi 6900 . . . . . . . 8 0 ∈ V
5756a1i 11 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ V)
5849, 55, 41, 32, 57fsuppssov1 9406 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
595, 9, 13, 16, 43, 58gsumsubgcl 19907 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ 𝐸)
6059fmpttd 7115 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))):𝐹𝐸)
612, 4, 60elmapdd 8863 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) ∈ (𝐸m 𝐹))
62 breq1 5126 . . . . 5 (𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
6362adantl 481 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
64 nfv 1913 . . . . . . . 8 𝑓((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
65 nfmpt1 5230 . . . . . . . . 9 𝑓(𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6665nfeq2 2915 . . . . . . . 8 𝑓 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6764, 66nfan 1898 . . . . . . 7 𝑓(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
68 simpr 484 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
69 ovexd 7448 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ V)
7068, 69fvmpt2d 7009 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑝𝑓) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
7170oveq1d 7428 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → ((𝑝𝑓) · 𝑓) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
7267, 71mpteq2da 5220 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)) = (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))
7372oveq2d 7429 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
7473eqeq2d 2745 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
7563, 74anbi12d 632 . . 3 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → ((𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) ↔ ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))))
7656a1i 11 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 0 ∈ V)
7760ffund 6720 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
7827adantr 480 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun 𝑞)
7945fsuppimpd 9391 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ∈ Fin)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝐺 supp 0) ∈ Fin)
81 imafi 9335 . . . . . . . 8 ((Fun 𝑞 ∧ (𝐺 supp 0) ∈ Fin) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8278, 80, 81syl2anc 584 . . . . . . 7 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
83 rnfi 9362 . . . . . . 7 ((𝑞 “ (𝐺 supp 0)) ∈ Fin → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8482, 83syl 17 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8534ffnd 6717 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn Word (𝐸𝐹))
8685ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
8724ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Word (𝐸𝐹) ∈ V)
88 0zd 12608 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 0 ∈ ℤ)
89 snssi 4788 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
9089adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
91 xpss2 5685 . . . . . . . . . . . . . . . . . . . 20 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
92 ssun2 4159 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
93 difxp 6164 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) = (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
9492, 93sseqtrri 4013 . . . . . . . . . . . . . . . . . . . 20 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
9591, 94sstrdi 3976 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
9690, 95syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
97 imassrn 6069 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 “ (𝐺 supp 0)) ⊆ ran 𝑞
9826frnd 6724 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
9998adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
10097, 99sstrid 3975 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹))
101 relxp 5683 . . . . . . . . . . . . . . . . . . . . 21 Rel (𝐸 × 𝐹)
102 relss 5771 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → (Rel (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0))))
103101, 102mpi 20 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0)))
104 relssdmrn 6268 . . . . . . . . . . . . . . . . . . . 20 (Rel (𝑞 “ (𝐺 supp 0)) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
105100, 103, 1043syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
106105sscond 4126 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
10796, 106sstrd 3974 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
108 imass2 6100 . . . . . . . . . . . . . . . . 17 ((𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
110109adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
11178adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → Fun 𝑞)
112 difpreima 7065 . . . . . . . . . . . . . . . . 17 (Fun 𝑞 → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
113111, 112syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
114 cnvimass 6080 . . . . . . . . . . . . . . . . . 18 (𝑞 “ (𝐸 × 𝐹)) ⊆ dom 𝑞
11537ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝑞 = Word (𝐸𝐹))
116114, 115sseqtrid 4006 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × 𝐹)) ⊆ Word (𝐸𝐹))
117 suppssdm 8184 . . . . . . . . . . . . . . . . . . . 20 (𝐺 supp 0) ⊆ dom 𝐺
11834fdmd 6726 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐺 = Word (𝐸𝐹))
119118ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝐺 = Word (𝐸𝐹))
120117, 119sseqtrid 4006 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
121120, 115sseqtrrd 4001 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ dom 𝑞)
122 sseqin2 4203 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 supp 0) ⊆ dom 𝑞 ↔ (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
123122biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((𝐺 supp 0) ⊆ dom 𝑞 → (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
124 dminss 6153 . . . . . . . . . . . . . . . . . . 19 (dom 𝑞 ∩ (𝐺 supp 0)) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0)))
125123, 124eqsstrrdi 4009 . . . . . . . . . . . . . . . . . 18 ((𝐺 supp 0) ⊆ dom 𝑞 → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
126121, 125syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
127116, 126ssdif2d 4128 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
128113, 127eqsstrd 3998 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
129110, 128sstrd 3974 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
130129sselda 3963 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
13186, 87, 88, 130fvdifsupp 8178 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) = 0)
132131oveq1d 7428 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = (0(.g𝑅)(1st ‘(𝑞𝑣))))
13351ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
13426ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
13536, 37sseqtrid 4006 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
136135ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
137136sselda 3963 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
138134, 137ffvelcdmd 7085 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
139 xp1st 8028 . . . . . . . . . . . . . 14 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
140138, 139syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
141133, 140sseldd 3964 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
14217, 5, 18mulg0 19062 . . . . . . . . . . . 12 ((1st ‘(𝑞𝑣)) ∈ 𝐵 → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
143141, 142syl 17 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
144132, 143eqtrd 2769 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
145144mpteq2dva 5222 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 ))
146145oveq2d 7429 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )))
14719grpmndd 18934 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
148147ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → 𝑅 ∈ Mnd)
14912a1i 11 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
1505gsumz 18819 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (𝑞 “ (𝐸 × {𝑓})) ∈ V) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
151148, 149, 150syl2anc 584 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
152146, 151eqtrd 2769 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = 0 )
153152, 4suppss2 8207 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ⊆ ran (𝑞 “ (𝐺 supp 0)))
15484, 153ssfid 9283 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ∈ Fin)
15561, 76, 77, 154isfsuppd 9388 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 )
1568ablcmnd 19775 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
157156adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑅 ∈ CMnd)
15824adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ∈ V)
15985ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝐺 Fn Word (𝐸𝐹))
160158adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ∈ V)
161 0zd 12608 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 0 ∈ ℤ)
162 simpr 484 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
163159, 160, 161, 162fvdifsupp 8178 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (𝐺𝑤) = 0)
164163oveq1d 7428 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
165 eqid 2734 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
166165crngmgp 20207 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
1676, 166syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
168167cmnmndd 19791 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
169168ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (mulGrp‘𝑅) ∈ Mnd)
17017subrgss 20541 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
1713, 170syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐵)
17251, 171unssd 4172 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
173 sswrd 14543 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
174172, 173syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
175174adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ⊆ Word 𝐵)
176175adantr 480 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ⊆ Word 𝐵)
177162eldifad 3943 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word (𝐸𝐹))
178176, 177sseldd 3964 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word 𝐵)
179165, 17mgpbas 20111 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑅))
180179gsumwcl 18822 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
181169, 178, 180syl2anc 584 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
18217, 5, 18mulg0 19062 . . . . . . . . . 10 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
183181, 182syl 17 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
184164, 183eqtrd 2769 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
18579adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ∈ Fin)
18619ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
18734adantr 480 . . . . . . . . . 10 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
188187ffvelcdmda 7084 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (𝐺𝑤) ∈ ℤ)
189168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ Mnd)
190175sselda 3963 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
191189, 190, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
19217, 18, 186, 188, 191mulgcld 19084 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
193117, 118sseqtrid 4006 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
194193adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
19517, 5, 157, 158, 184, 185, 192, 194gsummptres2 33000 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1963adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹 ∈ (SubRing‘𝑅))
19719ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑅 ∈ Grp)
19834ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝐺:Word (𝐸𝐹)⟶ℤ)
199194sselda 3963 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word (𝐸𝐹))
200198, 199ffvelcdmd 7085 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝐺𝑤) ∈ ℤ)
201168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (mulGrp‘𝑅) ∈ Mnd)
202194, 175sstrd 3974 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word 𝐵)
203202sselda 3963 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word 𝐵)
204201, 203, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
20517, 18, 197, 200, 204mulgcld 19084 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
20626adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
207206, 199ffvelcdmd 7085 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝑞𝑤) ∈ (𝐸 × 𝐹))
208 xp2nd 8029 . . . . . . . . 9 ((𝑞𝑤) ∈ (𝐸 × 𝐹) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
209207, 208syl 17 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
210 2fveq3 6891 . . . . . . . . 9 (𝑣 = 𝑤 → (2nd ‘(𝑞𝑣)) = (2nd ‘(𝑞𝑤)))
211210cbvmptv 5235 . . . . . . . 8 (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
21217, 5, 157, 185, 196, 205, 209, 211gsummpt2co 32995 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
213195, 212eqtrd 2769 . . . . . 6 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
214213adantr 480 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
215 elrgspnsubrunlem2.3 . . . . . 6 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
216215ad2antrr 726 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2177ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Ring)
21851ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
21926ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
220135adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
221220sselda 3963 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
222219, 221ffvelcdmd 7085 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
223222, 139syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
224218, 223sseldd 3964 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
225224adantllr 719 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
226196, 170syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹𝐵)
227226sselda 3963 . . . . . . . . . . . . . 14 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑓𝐵)
228227ad4ant13 751 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑓𝐵)
229 elrgspnsubrun.t . . . . . . . . . . . . . 14 · = (.r𝑅)
23017, 18, 229mulgass2 20275 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝐺𝑣) ∈ ℤ ∧ (1st ‘(𝑞𝑣)) ∈ 𝐵𝑓𝐵)) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
231217, 41, 225, 228, 230syl13anc 1373 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
232 oveq2 7421 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg 𝑣))
233 2fveq3 6891 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (1st ‘(𝑞𝑤)) = (1st ‘(𝑞𝑣)))
234 2fveq3 6891 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (2nd ‘(𝑞𝑤)) = (2nd ‘(𝑞𝑣)))
235233, 234oveq12d 7431 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
236232, 235eqeq12d 2750 . . . . . . . . . . . . . . 15 (𝑤 = 𝑣 → (((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) ↔ ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣)))))
237 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
238236, 237, 40rspcdva 3606 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
23926ffnd 6717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞 Fn Word (𝐸𝐹))
240239ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞 Fn Word (𝐸𝐹))
241 elpreima 7058 . . . . . . . . . . . . . . . . . . . 20 (𝑞 Fn Word (𝐸𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↔ (𝑣 ∈ Word (𝐸𝐹) ∧ (𝑞𝑣) ∈ (𝐸 × {𝑓}))))
242241simplbda 499 . . . . . . . . . . . . . . . . . . 19 ((𝑞 Fn Word (𝐸𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
243240, 242sylancom 588 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
244 xp2nd 8029 . . . . . . . . . . . . . . . . . 18 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
245243, 244syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
246245elsnd 32476 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
247246adantllr 719 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
248247oveq2d 7429 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))) = ((1st ‘(𝑞𝑣)) · 𝑓))
249238, 248eqtrd 2769 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · 𝑓))
250249oveq2d 7429 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
251231, 250eqtr4d 2772 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
252251mpteq2dva 5222 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))))
253 fveq2 6886 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
254 oveq2 7421 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg 𝑤))
255253, 254oveq12d 7431 . . . . . . . . . . 11 (𝑣 = 𝑤 → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
256255cbvmptv 5235 . . . . . . . . . 10 (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
257252, 256eqtrdi 2785 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
258257oveq2d 7429 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2597ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ Ring)
26012a1i 11 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
26119ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
262187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
263262, 221ffvelcdmd 7085 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
26417, 18, 261, 263, 224mulgcld 19084 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐵)
26546ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
266 0zd 12608 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
267265, 220, 266fmptssfisupp 9416 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
26854adantl 481 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑦𝐵) → (0(.g𝑅)𝑦) = 0 )
26956a1i 11 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ V)
270267, 268, 263, 224, 269fsuppssov1 9406 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
27117, 5, 229, 259, 260, 227, 264, 270gsummulc1 20282 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
272271adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
273157adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ CMnd)
27485ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
275158ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → Word (𝐸𝐹) ∈ V)
276 0zd 12608 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 0 ∈ ℤ)
277135ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
278 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
279278eldifad 3943 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
280277, 279sseldd 3964 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
281 eldif 3941 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ↔ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
282 nfv 1913 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0))
283 fvexd 6901 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) ∧ 𝑢 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑢)) ∈ V)
284 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))
285282, 283, 284fnmptd 6689 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
286285adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
287 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
288 2fveq3 6891 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑣)))
289 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
290 fvexd 6901 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ V)
291284, 288, 289, 290fvmptd3 7019 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
292291adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
293239ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑞 Fn Word (𝐸𝐹))
294 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
295293, 294, 242syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
296295, 244syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
297292, 296eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
298286, 287, 297elpreimad 7059 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
299298stoic1a 1771 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ¬ 𝑣 ∈ (𝐺 supp 0))
300299anasss 466 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
301281, 300sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
302280, 301eldifd 3942 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
303274, 275, 276, 302fvdifsupp 8178 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝐺𝑣) = 0)
304303oveq1d 7428 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
305168ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
306175adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → Word (𝐸𝐹) ⊆ Word 𝐵)
307220, 306sstrd 3974 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word 𝐵)
308307ssdifssd 4127 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ⊆ Word 𝐵)
309308sselda 3963 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word 𝐵)
310179gsumwcl 18822 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑣 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
311305, 309, 310syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
31217, 5, 18mulg0 19062 . . . . . . . . . . . . . . 15 (((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
313311, 312syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
314304, 313eqtrd 2769 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
315314ralrimiva 3133 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
316255eqeq1d 2736 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ))
317316cbvralvw 3223 . . . . . . . . . . . . 13 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
318 2fveq3 6891 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑤)))
319318cbvmptv 5235 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
320319, 211eqtr4i 2760 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
321320cnveqi 5865 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
322321imaeq1i 6055 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) = ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓})
323322difeq2i 4103 . . . . . . . . . . . . . 14 ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) = ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))
324323raleqi 3307 . . . . . . . . . . . . 13 (∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
325317, 324bitri 275 . . . . . . . . . . . 12 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
326315, 325sylib 218 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
327326r19.21bi 3237 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
328185adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝐺 supp 0) ∈ Fin)
329328cnvimamptfin 9375 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ∈ Fin)
33019ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
331187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
332220sselda 3963 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word (𝐸𝐹))
333331, 332ffvelcdmd 7085 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑤) ∈ ℤ)
334168ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
335307sselda 3963 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word 𝐵)
336334, 335, 180syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
33717, 18, 330, 333, 336mulgcld 19084 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
338239ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞 Fn Word (𝐸𝐹))
339194ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
340 nfv 1913 . . . . . . . . . . . . . . . . 17 𝑤(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
341 fvexd 6901 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ V)
342340, 341, 319fnmptd 6689 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
343 elpreima 7058 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ↔ (𝑣 ∈ (𝐺 supp 0) ∧ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})))
344343simprbda 498 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
345342, 344sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
346339, 345sseldd 3964 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ Word (𝐸𝐹))
34726ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
348347, 346ffvelcdmd 7085 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
349 1st2nd2 8035 . . . . . . . . . . . . . . . 16 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
350348, 349syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
351348, 139syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
352345, 291syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
353343simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
354342, 353sylancom 588 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
355352, 354eqeltrrd 2834 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
356351, 355opelxpd 5704 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩ ∈ (𝐸 × {𝑓}))
357350, 356eqeltrd 2833 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
358338, 346, 357elpreimad 7059 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
359358ex 412 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))))
360359ssrdv 3969 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
361322, 360eqsstrrid 4003 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
36217, 5, 273, 260, 327, 329, 337, 361gsummptres2 33000 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
363362adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
364258, 272, 3633eqtr3d 2777 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
365364mpteq2dva 5222 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)) = (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
366365oveq2d 7429 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
367214, 216, 3663eqtr4d 2779 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
368155, 367jca 511 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
36961, 75, 368rspcedvd 3607 . 2 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
370 fveq2 6886 . . . . 5 (𝑎 = (𝑞𝑤) → (1st𝑎) = (1st ‘(𝑞𝑤)))
371 fveq2 6886 . . . . 5 (𝑎 = (𝑞𝑤) → (2nd𝑎) = (2nd ‘(𝑞𝑤)))
372370, 371oveq12d 7431 . . . 4 (𝑎 = (𝑞𝑤) → ((1st𝑎) · (2nd𝑎)) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
373372eqeq2d 2745 . . 3 (𝑎 = (𝑞𝑤) → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))))
374 vex 3467 . . . . . . . 8 𝑒 ∈ V
375 vex 3467 . . . . . . . 8 𝑓 ∈ V
376374, 375op1std 8006 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (1st𝑎) = 𝑒)
377374, 375op2ndd 8007 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (2nd𝑎) = 𝑓)
378376, 377oveq12d 7431 . . . . . 6 (𝑎 = ⟨𝑒, 𝑓⟩ → ((1st𝑎) · (2nd𝑎)) = (𝑒 · 𝑓))
379378eqeq2d 2745 . . . . 5 (𝑎 = ⟨𝑒, 𝑓⟩ → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)))
380 simpllr 775 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑒𝐸)
381 simplr 768 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑓𝐹)
382380, 381opelxpd 5704 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ⟨𝑒, 𝑓⟩ ∈ (𝐸 × 𝐹))
383 simpr 484 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
384379, 382, 383rspcedvdw 3608 . . . 4 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
385165, 229mgpplusg 20110 . . . . 5 · = (+g‘(mulGrp‘𝑅))
386167adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ CMnd)
387165subrgsubm 20554 . . . . . . 7 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
3881, 387syl 17 . . . . . 6 (𝜑𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
389388adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
390165subrgsubm 20554 . . . . . . 7 (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
3913, 390syl 17 . . . . . 6 (𝜑𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
392391adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
393 simpr 484 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word (𝐸𝐹))
394385, 386, 389, 392, 393gsumwun 33012 . . . 4 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑒𝐸𝑓𝐹 ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
395384, 394r19.29vva 3203 . . 3 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
396373, 24, 21, 395ac6mapd 32571 . 2 (𝜑 → ∃𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
397369, 396r19.29a 3149 1 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  Vcvv 3463  cdif 3928  cun 3929  cin 3930  wss 3931  {csn 4606  cop 4612   class class class wbr 5123  cmpt 5205   × cxp 5663  ccnv 5664  dom cdm 5665  ran crn 5666  cima 5668  Rel wrel 5670  Fun wfun 6535   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995   supp csupp 8167  m cmap 8848  Fincfn 8967   finSupp cfsupp 9383  0cc0 11137  cz 12596  Word cword 14535  Basecbs 17230  .rcmulr 17275  0gc0g 17456   Σg cgsu 17457  Mndcmnd 18717  SubMndcsubmnd 18765  Grpcgrp 18921  .gcmg 19055  SubGrpcsubg 19108  CMndccmn 19767  Abelcabl 19768  mulGrpcmgp 20106  Ringcrg 20199  CRingccrg 20200  SubRingcsubrg 20538  RingSpancrgspn 20579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-oi 9532  df-r1 9786  df-rank 9787  df-card 9961  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14353  df-word 14536  df-lsw 14584  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-0g 17458  df-gsum 17459  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-subrg 20539
This theorem is referenced by:  elrgspnsubrun  33197
  Copyright terms: Public domain W3C validator