Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem2 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem2 33258
Description: Lemma for elrgspnsubrun 33259, second direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem2.x (𝜑𝑋𝐵)
elrgspnsubrunlem2.1 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
elrgspnsubrunlem2.2 (𝜑𝐺 finSupp 0)
elrgspnsubrunlem2.3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
Assertion
Ref Expression
elrgspnsubrunlem2 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Distinct variable groups:   0 ,𝑓,𝑝,𝑤   · ,𝑓,𝑝,𝑤   𝐵,𝑓,𝑤   𝑓,𝐸,𝑝,𝑤   𝑓,𝐹,𝑝,𝑤   𝑓,𝐺,𝑝,𝑤   𝑅,𝑓,𝑝,𝑤   𝑋,𝑝   𝜑,𝑓,𝑝,𝑤
Allowed substitution hints:   𝐵(𝑝)   𝑁(𝑤,𝑓,𝑝)   𝑋(𝑤,𝑓)

Proof of Theorem elrgspnsubrunlem2
Dummy variables 𝑞 𝑣 𝑦 𝑎 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspnsubrun.e . . . . 5 (𝜑𝐸 ∈ (SubRing‘𝑅))
21ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐸 ∈ (SubRing‘𝑅))
3 elrgspnsubrun.f . . . . 5 (𝜑𝐹 ∈ (SubRing‘𝑅))
43ad2antrr 726 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝐹 ∈ (SubRing‘𝑅))
5 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
6 elrgspnsubrun.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
76crngringd 20172 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
87ringabld 20209 . . . . . . 7 (𝜑𝑅 ∈ Abel)
98ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝑅 ∈ Abel)
10 vex 3441 . . . . . . . . 9 𝑞 ∈ V
1110cnvex 7864 . . . . . . . 8 𝑞 ∈ V
1211imaex 7853 . . . . . . 7 (𝑞 “ (𝐸 × {𝑓})) ∈ V
1312a1i 11 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
14 subrgsubg 20501 . . . . . . . 8 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubGrp‘𝑅))
151, 14syl 17 . . . . . . 7 (𝜑𝐸 ∈ (SubGrp‘𝑅))
1615ad3antrrr 730 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸 ∈ (SubGrp‘𝑅))
17 elrgspnsubrun.b . . . . . . . 8 𝐵 = (Base‘𝑅)
18 eqid 2733 . . . . . . . 8 (.g𝑅) = (.g𝑅)
196crnggrpd 20173 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2019ad4antr 732 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
211, 3xpexd 7693 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 × 𝐹) ∈ V)
221, 3unexd 7696 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ∈ V)
23 wrdexg 14438 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
2422, 23syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ∈ V)
2521, 24elmapd 8773 . . . . . . . . . . . . 13 (𝜑 → (𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹)) ↔ 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹)))
2625biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
2726ffund 6663 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Fun 𝑞)
2827ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Fun 𝑞)
29 fvimacnvi 6994 . . . . . . . . . 10 ((Fun 𝑞𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
3028, 29sylancom 588 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
31 xp1st 7962 . . . . . . . . 9 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3230, 31syl 17 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
3316adantr 480 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸 ∈ (SubGrp‘𝑅))
34 elrgspnsubrunlem2.1 . . . . . . . . . 10 (𝜑𝐺:Word (𝐸𝐹)⟶ℤ)
3534ad4antr 732 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
36 cnvimass 6038 . . . . . . . . . . 11 (𝑞 “ (𝐸 × {𝑓})) ⊆ dom 𝑞
3726fdmd 6669 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → dom 𝑞 = Word (𝐸𝐹))
3837ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → dom 𝑞 = Word (𝐸𝐹))
3936, 38sseqtrid 3973 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
4039sselda 3930 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
4135, 40ffvelcdmd 7027 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
4217, 18, 20, 32, 33, 41subgmulgcld 33054 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐸)
4342fmpttd 7057 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))):(𝑞 “ (𝐸 × {𝑓}))⟶𝐸)
4434feqmptd 6899 . . . . . . . . . 10 (𝜑𝐺 = (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)))
45 elrgspnsubrunlem2.2 . . . . . . . . . 10 (𝜑𝐺 finSupp 0)
4644, 45eqbrtrrd 5119 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
48 0zd 12491 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
4947, 39, 48fmptssfisupp 9289 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
5017subrgss 20496 . . . . . . . . . . 11 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
511, 50syl 17 . . . . . . . . . 10 (𝜑𝐸𝐵)
5251ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 𝐸𝐵)
5352sselda 3930 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → 𝑦𝐵)
5417, 5, 18mulg0 18995 . . . . . . . 8 (𝑦𝐵 → (0(.g𝑅)𝑦) = 0 )
5553, 54syl 17 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑦𝐸) → (0(.g𝑅)𝑦) = 0 )
565fvexi 6845 . . . . . . . 8 0 ∈ V
5756a1i 11 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → 0 ∈ V)
5849, 55, 41, 32, 57fsuppssov1 9279 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
595, 9, 13, 16, 43, 58gsumsubgcl 19840 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ 𝐸)
6059fmpttd 7057 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))):𝐹𝐸)
612, 4, 60elmapdd 8774 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) ∈ (𝐸m 𝐹))
62 breq1 5098 . . . . 5 (𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
6362adantl 481 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑝 finSupp 0 ↔ (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 ))
64 nfv 1915 . . . . . . . 8 𝑓((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
65 nfmpt1 5194 . . . . . . . . 9 𝑓(𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6665nfeq2 2913 . . . . . . . 8 𝑓 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
6764, 66nfan 1900 . . . . . . 7 𝑓(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
68 simpr 484 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
69 ovexd 7390 . . . . . . . . 9 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) ∈ V)
7068, 69fvmpt2d 6951 . . . . . . . 8 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → (𝑝𝑓) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))
7170oveq1d 7370 . . . . . . 7 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) ∧ 𝑓𝐹) → ((𝑝𝑓) · 𝑓) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
7267, 71mpteq2da 5187 . . . . . 6 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)) = (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))
7372oveq2d 7371 . . . . 5 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
7473eqeq2d 2744 . . . 4 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → (𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓))) ↔ 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
7563, 74anbi12d 632 . . 3 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑝 = (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))))) → ((𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))) ↔ ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))))
7656a1i 11 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 0 ∈ V)
7760ffund 6663 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))))
7827adantr 480 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → Fun 𝑞)
7945fsuppimpd 9264 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ∈ Fin)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝐺 supp 0) ∈ Fin)
81 imafi 9210 . . . . . . . 8 ((Fun 𝑞 ∧ (𝐺 supp 0) ∈ Fin) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8278, 80, 81syl2anc 584 . . . . . . 7 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑞 “ (𝐺 supp 0)) ∈ Fin)
83 rnfi 9235 . . . . . . 7 ((𝑞 “ (𝐺 supp 0)) ∈ Fin → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8482, 83syl 17 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ran (𝑞 “ (𝐺 supp 0)) ∈ Fin)
8534ffnd 6660 . . . . . . . . . . . . . 14 (𝜑𝐺 Fn Word (𝐸𝐹))
8685ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
8724ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → Word (𝐸𝐹) ∈ V)
88 0zd 12491 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 0 ∈ ℤ)
89 snssi 4761 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
9089adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → {𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))))
91 xpss2 5641 . . . . . . . . . . . . . . . . . . . 20 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
92 ssun2 4128 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
93 difxp 6119 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) = (((𝐸 ∖ dom (𝑞 “ (𝐺 supp 0))) × 𝐹) ∪ (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))))
9492, 93sseqtrri 3980 . . . . . . . . . . . . . . . . . . . 20 (𝐸 × (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
9591, 94sstrdi 3943 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
9690, 95syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))))
97 imassrn 6027 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 “ (𝐺 supp 0)) ⊆ ran 𝑞
9826frnd 6667 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
9998adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ran 𝑞 ⊆ (𝐸 × 𝐹))
10097, 99sstrid 3942 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹))
101 relxp 5639 . . . . . . . . . . . . . . . . . . . . 21 Rel (𝐸 × 𝐹)
102 relss 5728 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → (Rel (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0))))
103101, 102mpi 20 . . . . . . . . . . . . . . . . . . . 20 ((𝑞 “ (𝐺 supp 0)) ⊆ (𝐸 × 𝐹) → Rel (𝑞 “ (𝐺 supp 0)))
104 relssdmrn 6224 . . . . . . . . . . . . . . . . . . . 20 (Rel (𝑞 “ (𝐺 supp 0)) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
105100, 103, 1043syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐺 supp 0)) ⊆ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0))))
106105sscond 4095 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝐸 × 𝐹) ∖ (dom (𝑞 “ (𝐺 supp 0)) × ran (𝑞 “ (𝐺 supp 0)))) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
10796, 106sstrd 3941 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))))
108 imass2 6058 . . . . . . . . . . . . . . . . 17 ((𝐸 × {𝑓}) ⊆ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
110109adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))))
11178adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → Fun 𝑞)
112 difpreima 7007 . . . . . . . . . . . . . . . . 17 (Fun 𝑞 → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
113111, 112syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) = ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))))
114 cnvimass 6038 . . . . . . . . . . . . . . . . . 18 (𝑞 “ (𝐸 × 𝐹)) ⊆ dom 𝑞
11537ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝑞 = Word (𝐸𝐹))
116114, 115sseqtrid 3973 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × 𝐹)) ⊆ Word (𝐸𝐹))
117 suppssdm 8116 . . . . . . . . . . . . . . . . . . . 20 (𝐺 supp 0) ⊆ dom 𝐺
11834fdmd 6669 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐺 = Word (𝐸𝐹))
119118ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → dom 𝐺 = Word (𝐸𝐹))
120117, 119sseqtrid 3973 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
121120, 115sseqtrrd 3968 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ dom 𝑞)
122 sseqin2 4172 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 supp 0) ⊆ dom 𝑞 ↔ (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
123122biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((𝐺 supp 0) ⊆ dom 𝑞 → (dom 𝑞 ∩ (𝐺 supp 0)) = (𝐺 supp 0))
124 dminss 6108 . . . . . . . . . . . . . . . . . . 19 (dom 𝑞 ∩ (𝐺 supp 0)) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0)))
125123, 124eqsstrrdi 3976 . . . . . . . . . . . . . . . . . 18 ((𝐺 supp 0) ⊆ dom 𝑞 → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
126121, 125syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝐺 supp 0) ⊆ (𝑞 “ (𝑞 “ (𝐺 supp 0))))
127116, 126ssdif2d 4097 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → ((𝑞 “ (𝐸 × 𝐹)) ∖ (𝑞 “ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
128113, 127eqsstrd 3965 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ ((𝐸 × 𝐹) ∖ (𝑞 “ (𝐺 supp 0)))) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
129110, 128sstrd 3941 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
130129sselda 3930 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
13186, 87, 88, 130fvdifsupp 8110 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) = 0)
132131oveq1d 7370 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = (0(.g𝑅)(1st ‘(𝑞𝑣))))
13351ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
13426ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
13536, 37sseqtrid 3973 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
136135ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
137136sselda 3930 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
138134, 137ffvelcdmd 7027 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
139 xp1st 7962 . . . . . . . . . . . . . 14 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
140138, 139syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
141133, 140sseldd 3931 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
14217, 5, 18mulg0 18995 . . . . . . . . . . . 12 ((1st ‘(𝑞𝑣)) ∈ 𝐵 → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
143141, 142syl 17 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (0(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
144132, 143eqtrd 2768 . . . . . . . . . 10 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) = 0 )
145144mpteq2dva 5188 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 ))
146145oveq2d 7371 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )))
14719grpmndd 18867 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
148147ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → 𝑅 ∈ Mnd)
14912a1i 11 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
1505gsumz 18752 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (𝑞 “ (𝐸 × {𝑓})) ∈ V) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
151148, 149, 150syl2anc 584 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ 0 )) = 0 )
152146, 151eqtrd 2768 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓 ∈ (𝐹 ∖ ran (𝑞 “ (𝐺 supp 0)))) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) = 0 )
153152, 4suppss2 8139 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ⊆ ran (𝑞 “ (𝐺 supp 0)))
15484, 153ssfid 9164 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) supp 0 ) ∈ Fin)
15561, 76, 77, 154isfsuppd 9261 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0 )
1568ablcmnd 19708 . . . . . . . . 9 (𝜑𝑅 ∈ CMnd)
157156adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑅 ∈ CMnd)
15824adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ∈ V)
15985ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝐺 Fn Word (𝐸𝐹))
160158adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ∈ V)
161 0zd 12491 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 0 ∈ ℤ)
162 simpr 484 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
163159, 160, 161, 162fvdifsupp 8110 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (𝐺𝑤) = 0)
164163oveq1d 7370 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
165 eqid 2733 . . . . . . . . . . . . . . 15 (mulGrp‘𝑅) = (mulGrp‘𝑅)
166165crngmgp 20167 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
1676, 166syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
168167cmnmndd 19724 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
169168ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (mulGrp‘𝑅) ∈ Mnd)
17017subrgss 20496 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
1713, 170syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐵)
17251, 171unssd 4141 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
173 sswrd 14436 . . . . . . . . . . . . . . 15 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
174172, 173syl 17 . . . . . . . . . . . . . 14 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
175174adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → Word (𝐸𝐹) ⊆ Word 𝐵)
176175adantr 480 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → Word (𝐸𝐹) ⊆ Word 𝐵)
177162eldifad 3910 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word (𝐸𝐹))
178176, 177sseldd 3931 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → 𝑤 ∈ Word 𝐵)
179165, 17mgpbas 20071 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑅))
180179gsumwcl 18755 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
181169, 178, 180syl2anc 584 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
18217, 5, 18mulg0 18995 . . . . . . . . . 10 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
183181, 182syl 17 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
184164, 183eqtrd 2768 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
18579adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ∈ Fin)
18619ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
18734adantr 480 . . . . . . . . . 10 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
188187ffvelcdmda 7026 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (𝐺𝑤) ∈ ℤ)
189168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ Mnd)
190175sselda 3930 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
191189, 190, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
19217, 18, 186, 188, 191mulgcld 19017 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ Word (𝐸𝐹)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
193117, 118sseqtrid 3973 . . . . . . . . 9 (𝜑 → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
194193adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
19517, 5, 157, 158, 184, 185, 192, 194gsummptres2 33064 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1963adantr 480 . . . . . . . 8 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹 ∈ (SubRing‘𝑅))
19719ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑅 ∈ Grp)
19834ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝐺:Word (𝐸𝐹)⟶ℤ)
199194sselda 3930 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word (𝐸𝐹))
200198, 199ffvelcdmd 7027 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝐺𝑤) ∈ ℤ)
201168ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (mulGrp‘𝑅) ∈ Mnd)
202194, 175sstrd 3941 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝐺 supp 0) ⊆ Word 𝐵)
203202sselda 3930 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑤 ∈ Word 𝐵)
204201, 203, 180syl2anc 584 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
20517, 18, 197, 200, 204mulgcld 19017 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
20626adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
207206, 199ffvelcdmd 7027 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (𝑞𝑤) ∈ (𝐸 × 𝐹))
208 xp2nd 7963 . . . . . . . . 9 ((𝑞𝑤) ∈ (𝐸 × 𝐹) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
209207, 208syl 17 . . . . . . . 8 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ 𝐹)
210 2fveq3 6836 . . . . . . . . 9 (𝑣 = 𝑤 → (2nd ‘(𝑞𝑣)) = (2nd ‘(𝑞𝑤)))
211210cbvmptv 5199 . . . . . . . 8 (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
21217, 5, 157, 185, 196, 205, 209, 211gsummpt2co 33059 . . . . . . 7 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ (𝐺 supp 0) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
213195, 212eqtrd 2768 . . . . . 6 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
214213adantr 480 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
215 elrgspnsubrunlem2.3 . . . . . 6 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
216215ad2antrr 726 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2177ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Ring)
21851ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐸𝐵)
21926ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
220135adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
221220sselda 3930 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
222219, 221ffvelcdmd 7027 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
223222, 139syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
224218, 223sseldd 3931 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
225224adantllr 719 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (1st ‘(𝑞𝑣)) ∈ 𝐵)
226196, 170syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝐹𝐵)
227226sselda 3930 . . . . . . . . . . . . . 14 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑓𝐵)
228227ad4ant13 751 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑓𝐵)
229 elrgspnsubrun.t . . . . . . . . . . . . . 14 · = (.r𝑅)
23017, 18, 229mulgass2 20235 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝐺𝑣) ∈ ℤ ∧ (1st ‘(𝑞𝑣)) ∈ 𝐵𝑓𝐵)) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
231217, 41, 225, 228, 230syl13anc 1374 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
232 oveq2 7363 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg 𝑣))
233 2fveq3 6836 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (1st ‘(𝑞𝑤)) = (1st ‘(𝑞𝑣)))
234 2fveq3 6836 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (2nd ‘(𝑞𝑤)) = (2nd ‘(𝑞𝑣)))
235233, 234oveq12d 7373 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑣 → ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
236232, 235eqeq12d 2749 . . . . . . . . . . . . . . 15 (𝑤 = 𝑣 → (((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))) ↔ ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣)))))
237 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
238236, 237, 40rspcdva 3574 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))))
23926ffnd 6660 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) → 𝑞 Fn Word (𝐸𝐹))
240239ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑞 Fn Word (𝐸𝐹))
241 elpreima 7000 . . . . . . . . . . . . . . . . . . . 20 (𝑞 Fn Word (𝐸𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↔ (𝑣 ∈ Word (𝐸𝐹) ∧ (𝑞𝑣) ∈ (𝐸 × {𝑓}))))
242241simplbda 499 . . . . . . . . . . . . . . . . . . 19 ((𝑞 Fn Word (𝐸𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
243240, 242sylancom 588 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
244 xp2nd 7963 . . . . . . . . . . . . . . . . . 18 ((𝑞𝑣) ∈ (𝐸 × {𝑓}) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
245243, 244syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
246245elsnd 4595 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
247246adantllr 719 . . . . . . . . . . . . . . 15 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (2nd ‘(𝑞𝑣)) = 𝑓)
248247oveq2d 7371 . . . . . . . . . . . . . 14 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((1st ‘(𝑞𝑣)) · (2nd ‘(𝑞𝑣))) = ((1st ‘(𝑞𝑣)) · 𝑓))
249238, 248eqtrd 2768 . . . . . . . . . . . . 13 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) = ((1st ‘(𝑞𝑣)) · 𝑓))
250249oveq2d 7371 . . . . . . . . . . . 12 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑣)(.g𝑅)((1st ‘(𝑞𝑣)) · 𝑓)))
251231, 250eqtr4d 2771 . . . . . . . . . . 11 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓) = ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
252251mpteq2dva 5188 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))))
253 fveq2 6831 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
254 oveq2 7363 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ((mulGrp‘𝑅) Σg 𝑣) = ((mulGrp‘𝑅) Σg 𝑤))
255253, 254oveq12d 7373 . . . . . . . . . . 11 (𝑣 = 𝑤 → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
256255cbvmptv 5199 . . . . . . . . . 10 (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣))) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
257252, 256eqtrdi 2784 . . . . . . . . 9 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓)) = (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
258257oveq2d 7371 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
2597ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ Ring)
26012a1i 11 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ∈ V)
26119ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
262187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
263262, 221ffvelcdmd 7027 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑣) ∈ ℤ)
26417, 18, 261, 263, 224mulgcld 19017 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) ∈ 𝐵)
26546ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ Word (𝐸𝐹) ↦ (𝐺𝑣)) finSupp 0)
266 0zd 12491 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ ℤ)
267265, 220, 266fmptssfisupp 9289 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (𝐺𝑣)) finSupp 0)
26854adantl 481 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑦𝐵) → (0(.g𝑅)𝑦) = 0 )
26956a1i 11 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 0 ∈ V)
270267, 268, 263, 224, 269fsuppssov1 9279 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))) finSupp 0 )
27117, 5, 229, 259, 260, 227, 264, 270gsummulc1 20242 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
272271adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ (((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))) · 𝑓))) = ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))
273157adantr 480 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → 𝑅 ∈ CMnd)
27485ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝐺 Fn Word (𝐸𝐹))
275158ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → Word (𝐸𝐹) ∈ V)
276 0zd 12491 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 0 ∈ ℤ)
277135ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word (𝐸𝐹))
278 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
279278eldifad 3910 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
280277, 279sseldd 3931 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word (𝐸𝐹))
281 eldif 3908 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ↔ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})))
282 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . 23 𝑢(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0))
283 fvexd 6846 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) ∧ 𝑢 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑢)) ∈ V)
284 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))
285282, 283, 284fnmptd 6630 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
286285adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
287 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
288 2fveq3 6836 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑣)))
289 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝐺 supp 0))
290 fvexd 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ V)
291284, 288, 289, 290fvmptd3 6961 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
292291adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
293239ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑞 Fn Word (𝐸𝐹))
294 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
295293, 294, 242syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
296295, 244syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
297292, 296eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
298286, 287, 297elpreimad 7001 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ 𝑣 ∈ (𝐺 supp 0)) → 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
299298stoic1a 1773 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ¬ 𝑣 ∈ (𝐺 supp 0))
300299anasss 466 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ∧ ¬ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
301281, 300sylan2b 594 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ¬ 𝑣 ∈ (𝐺 supp 0))
302280, 301eldifd 3909 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ (Word (𝐸𝐹) ∖ (𝐺 supp 0)))
303274, 275, 276, 302fvdifsupp 8110 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (𝐺𝑣) = 0)
304303oveq1d 7370 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)))
305168ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
306175adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → Word (𝐸𝐹) ⊆ Word 𝐵)
307220, 306sstrd 3941 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑞 “ (𝐸 × {𝑓})) ⊆ Word 𝐵)
308307ssdifssd 4096 . . . . . . . . . . . . . . . . 17 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ⊆ Word 𝐵)
309308sselda 3930 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → 𝑣 ∈ Word 𝐵)
310179gsumwcl 18755 . . . . . . . . . . . . . . . 16 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑣 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
311305, 309, 310syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵)
31217, 5, 18mulg0 18995 . . . . . . . . . . . . . . 15 (((mulGrp‘𝑅) Σg 𝑣) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
313311, 312syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
314304, 313eqtrd 2768 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))) → ((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
315314ralrimiva 3125 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 )
316255eqeq1d 2735 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ))
317316cbvralvw 3211 . . . . . . . . . . . . 13 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
318 2fveq3 6836 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (2nd ‘(𝑞𝑢)) = (2nd ‘(𝑞𝑤)))
319318cbvmptv 5199 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑤 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑤)))
320319, 211eqtr4i 2759 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
321320cnveqi 5820 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) = (𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣)))
322321imaeq1i 6013 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) = ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓})
323322difeq2i 4072 . . . . . . . . . . . . . 14 ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) = ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))
324323raleqi 3291 . . . . . . . . . . . . 13 (∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
325317, 324bitri 275 . . . . . . . . . . . 12 (∀𝑣 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))((𝐺𝑣)(.g𝑅)((mulGrp‘𝑅) Σg 𝑣)) = 0 ↔ ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
326315, 325sylib 218 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ∀𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
327326r19.21bi 3225 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ ((𝑞 “ (𝐸 × {𝑓})) ∖ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
328185adantr 480 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝐺 supp 0) ∈ Fin)
329328cnvimamptfin 9248 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ∈ Fin)
33019ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑅 ∈ Grp)
331187ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝐺:Word (𝐸𝐹)⟶ℤ)
332220sselda 3930 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word (𝐸𝐹))
333331, 332ffvelcdmd 7027 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (𝐺𝑤) ∈ ℤ)
334168ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → (mulGrp‘𝑅) ∈ Mnd)
335307sselda 3930 . . . . . . . . . . . 12 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → 𝑤 ∈ Word 𝐵)
336334, 335, 180syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
33717, 18, 330, 333, 336mulgcld 19017 . . . . . . . . . 10 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑤 ∈ (𝑞 “ (𝐸 × {𝑓}))) → ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
338239ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞 Fn Word (𝐸𝐹))
339194ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝐺 supp 0) ⊆ Word (𝐸𝐹))
340 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑤(((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}))
341 fvexd 6846 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) ∧ 𝑤 ∈ (𝐺 supp 0)) → (2nd ‘(𝑞𝑤)) ∈ V)
342340, 341, 319fnmptd 6630 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0))
343 elpreima 7000 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ↔ (𝑣 ∈ (𝐺 supp 0) ∧ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})))
344343simprbda 498 . . . . . . . . . . . . . . . 16 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
345342, 344sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝐺 supp 0))
346339, 345sseldd 3931 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ Word (𝐸𝐹))
34726ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑞:Word (𝐸𝐹)⟶(𝐸 × 𝐹))
348347, 346ffvelcdmd 7027 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × 𝐹))
349 1st2nd2 7969 . . . . . . . . . . . . . . . 16 ((𝑞𝑣) ∈ (𝐸 × 𝐹) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
350348, 349syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) = ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩)
351348, 139syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (1st ‘(𝑞𝑣)) ∈ 𝐸)
352345, 291syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) = (2nd ‘(𝑞𝑣)))
353343simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) Fn (𝐺 supp 0) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
354342, 353sylancom 588 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢)))‘𝑣) ∈ {𝑓})
355352, 354eqeltrrd 2834 . . . . . . . . . . . . . . . 16 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (2nd ‘(𝑞𝑣)) ∈ {𝑓})
356351, 355opelxpd 5660 . . . . . . . . . . . . . . 15 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → ⟨(1st ‘(𝑞𝑣)), (2nd ‘(𝑞𝑣))⟩ ∈ (𝐸 × {𝑓}))
357350, 356eqeltrd 2833 . . . . . . . . . . . . . 14 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → (𝑞𝑣) ∈ (𝐸 × {𝑓}))
358338, 346, 357elpreimad 7001 . . . . . . . . . . . . 13 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) ∧ 𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓})) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})))
359358ex 412 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑣 ∈ ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) → 𝑣 ∈ (𝑞 “ (𝐸 × {𝑓}))))
360359ssrdv 3936 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑢 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑢))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
361322, 360eqsstrrid 3970 . . . . . . . . . 10 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ⊆ (𝑞 “ (𝐸 × {𝑓})))
36217, 5, 273, 260, 327, 329, 337, 361gsummptres2 33064 . . . . . . . . 9 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
363362adantlr 715 . . . . . . . 8 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → (𝑅 Σg (𝑤 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
364258, 272, 3633eqtr3d 2776 . . . . . . 7 ((((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) ∧ 𝑓𝐹) → ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓) = (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
365364mpteq2dva 5188 . . . . . 6 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)) = (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
366365oveq2d 7371 . . . . 5 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))) = (𝑅 Σg (𝑓𝐹 ↦ (𝑅 Σg (𝑤 ∈ ((𝑣 ∈ (𝐺 supp 0) ↦ (2nd ‘(𝑞𝑣))) “ {𝑓}) ↦ ((𝐺𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))))
367214, 216, 3663eqtr4d 2778 . . . 4 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → 𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓))))
368155, 367jca 511 . . 3 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ((𝑓𝐹 ↦ (𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣)))))) finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑅 Σg (𝑣 ∈ (𝑞 “ (𝐸 × {𝑓})) ↦ ((𝐺𝑣)(.g𝑅)(1st ‘(𝑞𝑣))))) · 𝑓)))))
36961, 75, 368rspcedvd 3575 . 2 (((𝜑𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))) ∧ ∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))) → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
370 fveq2 6831 . . . . 5 (𝑎 = (𝑞𝑤) → (1st𝑎) = (1st ‘(𝑞𝑤)))
371 fveq2 6831 . . . . 5 (𝑎 = (𝑞𝑤) → (2nd𝑎) = (2nd ‘(𝑞𝑤)))
372370, 371oveq12d 7373 . . . 4 (𝑎 = (𝑞𝑤) → ((1st𝑎) · (2nd𝑎)) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
373372eqeq2d 2744 . . 3 (𝑎 = (𝑞𝑤) → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤)))))
374 vex 3441 . . . . . . . 8 𝑒 ∈ V
375 vex 3441 . . . . . . . 8 𝑓 ∈ V
376374, 375op1std 7940 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (1st𝑎) = 𝑒)
377374, 375op2ndd 7941 . . . . . . 7 (𝑎 = ⟨𝑒, 𝑓⟩ → (2nd𝑎) = 𝑓)
378376, 377oveq12d 7373 . . . . . 6 (𝑎 = ⟨𝑒, 𝑓⟩ → ((1st𝑎) · (2nd𝑎)) = (𝑒 · 𝑓))
379378eqeq2d 2744 . . . . 5 (𝑎 = ⟨𝑒, 𝑓⟩ → (((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)) ↔ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)))
380 simpllr 775 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑒𝐸)
381 simplr 768 . . . . . 6 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → 𝑓𝐹)
382380, 381opelxpd 5660 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ⟨𝑒, 𝑓⟩ ∈ (𝐸 × 𝐹))
383 simpr 484 . . . . 5 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
384379, 382, 383rspcedvdw 3576 . . . 4 (((((𝜑𝑤 ∈ Word (𝐸𝐹)) ∧ 𝑒𝐸) ∧ 𝑓𝐹) ∧ ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
385165, 229mgpplusg 20070 . . . . 5 · = (+g‘(mulGrp‘𝑅))
386167adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (mulGrp‘𝑅) ∈ CMnd)
387165subrgsubm 20509 . . . . . . 7 (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
3881, 387syl 17 . . . . . 6 (𝜑𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
389388adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐸 ∈ (SubMnd‘(mulGrp‘𝑅)))
390165subrgsubm 20509 . . . . . . 7 (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
3913, 390syl 17 . . . . . 6 (𝜑𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
392391adantr 480 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝐹 ∈ (SubMnd‘(mulGrp‘𝑅)))
393 simpr 484 . . . . 5 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word (𝐸𝐹))
394385, 386, 389, 392, 393gsumwun 33086 . . . 4 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑒𝐸𝑓𝐹 ((mulGrp‘𝑅) Σg 𝑤) = (𝑒 · 𝑓))
395384, 394r19.29vva 3193 . . 3 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ∃𝑎 ∈ (𝐸 × 𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st𝑎) · (2nd𝑎)))
396373, 24, 21, 395ac6mapd 32627 . 2 (𝜑 → ∃𝑞 ∈ ((𝐸 × 𝐹) ↑m Word (𝐸𝐹))∀𝑤 ∈ Word (𝐸𝐹)((mulGrp‘𝑅) Σg 𝑤) = ((1st ‘(𝑞𝑤)) · (2nd ‘(𝑞𝑤))))
397369, 396r19.29a 3141 1 (𝜑 → ∃𝑝 ∈ (𝐸m 𝐹)(𝑝 finSupp 0𝑋 = (𝑅 Σg (𝑓𝐹 ↦ ((𝑝𝑓) · 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  {csn 4577  cop 4583   class class class wbr 5095  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  cima 5624  Rel wrel 5626  Fun wfun 6483   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929   supp csupp 8099  m cmap 8759  Fincfn 8879   finSupp cfsupp 9256  0cc0 11017  cz 12479  Word cword 14427  Basecbs 17127  .rcmulr 17169  0gc0g 17350   Σg cgsu 17351  Mndcmnd 18650  SubMndcsubmnd 18698  Grpcgrp 18854  .gcmg 18988  SubGrpcsubg 19041  CMndccmn 19700  Abelcabl 19701  mulGrpcmgp 20066  Ringcrg 20159  CRingccrg 20160  SubRingcsubrg 20493  RingSpancrgspn 20534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-reg 9489  ax-inf2 9542  ax-ac2 10365  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-r1 9668  df-rank 9669  df-card 9843  df-ac 10018  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-word 14428  df-lsw 14477  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-0g 17352  df-gsum 17353  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-subrg 20494
This theorem is referenced by:  elrgspnsubrun  33259
  Copyright terms: Public domain W3C validator