| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqab | Structured version Visualization version GIF version | ||
| Description: One direction of eqabb 2870 is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025.) |
| Ref | Expression |
|---|---|
| eqab | ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → 𝐴 = {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 2867 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | abbi 2796 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | eqtrid 2778 | 1 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → 𝐴 = {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: rabid2im 3427 |
| Copyright terms: Public domain | W3C validator |