MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqab Structured version   Visualization version   GIF version

Theorem eqab 2883
Description: One direction of eqabb 2884 is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025.)
Assertion
Ref Expression
eqab (∀𝑥(𝑥𝐴𝜑) → 𝐴 = {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqab
StepHypRef Expression
1 abid1 2881 . 2 𝐴 = {𝑥𝑥𝐴}
2 abbi 2810 . 2 (∀𝑥(𝑥𝐴𝜑) → {𝑥𝑥𝐴} = {𝑥𝜑})
31, 2eqtrid 2792 1 (∀𝑥(𝑥𝐴𝜑) → 𝐴 = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819
This theorem is referenced by:  rabid2im  3477
  Copyright terms: Public domain W3C validator