![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqab | Structured version Visualization version GIF version |
Description: One direction of eqabb 2865 is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025.) |
Ref | Expression |
---|---|
eqab | ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → 𝐴 = {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 2862 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | abbi 2792 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | eqtrid 2776 | 1 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → 𝐴 = {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |