MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqab Structured version   Visualization version   GIF version

Theorem eqab 2868
Description: One direction of eqabb 2869 is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025.)
Assertion
Ref Expression
eqab (∀𝑥(𝑥𝐴𝜑) → 𝐴 = {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqab
StepHypRef Expression
1 abid1 2866 . 2 𝐴 = {𝑥𝑥𝐴}
2 abbi 2796 . 2 (∀𝑥(𝑥𝐴𝜑) → {𝑥𝑥𝐴} = {𝑥𝜑})
31, 2eqtrid 2780 1 (∀𝑥(𝑥𝐴𝜑) → 𝐴 = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wcel 2099  {cab 2705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator