![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqab | Structured version Visualization version GIF version |
Description: One direction of eqabb 2873 is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025.) |
Ref | Expression |
---|---|
eqab | ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → 𝐴 = {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 2870 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | abbi 2800 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | eqtrid 2784 | 1 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑) → 𝐴 = {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ∈ wcel 2106 {cab 2709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |