MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqab Structured version   Visualization version   GIF version

Theorem eqab 2874
Description: One direction of eqabb 2875 is provable from fewer axioms. (Contributed by Wolf Lammen, 13-Feb-2025.)
Assertion
Ref Expression
eqab (∀𝑥(𝑥𝐴𝜑) → 𝐴 = {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqab
StepHypRef Expression
1 abid1 2872 . 2 𝐴 = {𝑥𝑥𝐴}
2 abbi 2801 . 2 (∀𝑥(𝑥𝐴𝜑) → {𝑥𝑥𝐴} = {𝑥𝜑})
31, 2eqtrid 2783 1 (∀𝑥(𝑥𝐴𝜑) → 𝐴 = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  {cab 2714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810
This theorem is referenced by:  rabid2im  3453
  Copyright terms: Public domain W3C validator