Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtrid | Structured version Visualization version GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqtrid.1 | ⊢ 𝐴 = 𝐵 |
eqtrid.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtrid | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtrid.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqtrid.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eqtrd 2779 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Copyright terms: Public domain | W3C validator |