MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabb Structured version   Visualization version   GIF version

Theorem eqabb 2868
Description: Equality of a class variable and a class abstraction (also called a class builder). Theorem 5.1 of [Quine] p. 34. This theorem shows the relationship between expressions with class abstractions and expressions with class variables. Note that abbib 2799 and its relatives are among those useful for converting theorems with class variables to equivalent theorems with wff variables, by first substituting a class abstraction for each class variable.

Class variables can always be eliminated from a theorem to result in an equivalent theorem with wff variables, and vice-versa. The idea is roughly as follows. To convert a theorem with a wff variable 𝜑 (that has a free variable 𝑥) to a theorem with a class variable 𝐴, we substitute 𝑥𝐴 for 𝜑 throughout and simplify, where 𝐴 is a new class variable not already in the wff. An example is the conversion of zfauscl 5256 to inex1 5275 (look at the instance of zfauscl 5256 that occurs in the proof of inex1 5275). Conversely, to convert a theorem with a class variable 𝐴 to one with 𝜑, we substitute {𝑥𝜑} for 𝐴 throughout and simplify, where 𝑥 and 𝜑 are new setvar and wff variables not already in the wff. Examples include dfsymdif2 4227 and cp 9851; the latter derives a formula containing wff variables from substitution instances of the class variables in its equivalent formulation cplem2 9850. For more information on class variables, see Quine pp. 15-21 and/or Takeuti and Zaring pp. 10-13.

Usage of eqabbw 2803 is preferred since it requires fewer axioms. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 12-Feb-2025.)

Assertion
Ref Expression
eqabb (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqabb
StepHypRef Expression
1 abid1 2865 . . 3 𝐴 = {𝑥𝑥𝐴}
21eqeq1i 2735 . 2 (𝐴 = {𝑥𝜑} ↔ {𝑥𝑥𝐴} = {𝑥𝜑})
3 abbib 2799 . 2 ({𝑥𝑥𝐴} = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
42, 3bitri 275 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804
This theorem is referenced by:  eqabcb  2870  clabel  2875  ruOLD  3755  sbcabel  3844  zfrep4  5251  dmopab3  5886  rnopab3  5923  funimaexgOLD  6607  fineqvrep  35092  bj-abex  37025  qseq  38647  sticksstones1  42141  sticksstones2  42142
  Copyright terms: Public domain W3C validator