| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version | ||
| Description: A simplification of class abstraction. Commuted form of abid1 2867. See comments there. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 2867 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: csbid 3858 csbconstg 3864 csbie 3880 abss 4009 ssab 4010 abssi 4015 notab 4261 dfrab3 4266 notrab 4269 eusn 4680 uniintsn 4933 axrep6g 5226 csbexg 5246 imai 6022 dffv4 6819 orduniss2 7763 dfixp 8823 euen1b 8950 modom2 9136 pwfir 9201 infmap2 10108 ustfn 24117 ustn0 24136 lrrecse 27885 lrrecpred 27887 fpwrelmap 32716 eulerpartlemgvv 34389 ballotlem2 34502 dffv5 35966 ptrest 37669 cnambfre 37718 cnvepresex 38378 pmapglb 39879 polval2N 40015 rngunsnply 43272 iocinico 43315 |
| Copyright terms: Public domain | W3C validator |