| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version | ||
| Description: A simplification of class abstraction. Commuted form of abid1 2864. See comments there. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 2864 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: csbid 3864 csbconstg 3870 csbie 3886 abss 4015 ssab 4016 abssi 4021 notab 4265 dfrab3 4270 notrab 4273 eusn 4682 uniintsn 4935 iunidOLD 5010 axrep6g 5229 csbexg 5249 imai 6025 dffv4 6819 orduniss2 7766 dfixp 8826 euen1b 8953 modom2 9141 pwfir 9206 infmap2 10111 cshwsexaOLD 14731 ustfn 24087 ustn0 24106 lrrecse 27854 lrrecpred 27856 fpwrelmap 32677 eulerpartlemgvv 34350 ballotlem2 34463 dffv5 35908 ptrest 37609 cnambfre 37658 cnvepresex 38314 pmapglb 39759 polval2N 39895 rngunsnply 43152 iocinico 43195 |
| Copyright terms: Public domain | W3C validator |