![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version |
Description: A simplification of class abstraction. Commuted form of abid1 2878. See comments there. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 2878 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | 1 | eqcomi 2746 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 |
This theorem is referenced by: csbid 3924 csbconstg 3930 csbie 3947 abss 4076 ssab 4077 abssi 4083 notab 4323 dfrab3 4328 notrab 4331 eusn 4738 uniintsn 4993 iunidOLD 5069 axrep6g 5299 csbexg 5319 imai 6099 dffv4 6911 orduniss2 7860 dfixp 8947 euen1b 9076 modom2 9288 pwfir 9362 infmap2 10264 cshwsexaOLD 14869 ustfn 24235 ustn0 24254 lrrecse 28001 lrrecpred 28003 fpwrelmap 32765 eulerpartlemgvv 34372 ballotlem2 34484 dffv5 35919 ptrest 37620 cnambfre 37669 cnvepresex 38330 pmapglb 39767 polval2N 39903 rngunsnply 43174 iocinico 43217 |
Copyright terms: Public domain | W3C validator |