| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version | ||
| Description: A simplification of class abstraction. Commuted form of abid1 2865. See comments there. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 2865 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | 1 | eqcomi 2739 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: csbid 3877 csbconstg 3883 csbie 3899 abss 4028 ssab 4029 abssi 4035 notab 4279 dfrab3 4284 notrab 4287 eusn 4696 uniintsn 4951 iunidOLD 5027 axrep6g 5247 csbexg 5267 imai 6047 dffv4 6857 orduniss2 7810 dfixp 8874 euen1b 9001 modom2 9198 pwfir 9272 infmap2 10176 cshwsexaOLD 14796 ustfn 24095 ustn0 24114 lrrecse 27855 lrrecpred 27857 fpwrelmap 32662 eulerpartlemgvv 34373 ballotlem2 34486 dffv5 35907 ptrest 37608 cnambfre 37657 cnvepresex 38313 pmapglb 39759 polval2N 39895 rngunsnply 43151 iocinico 43194 |
| Copyright terms: Public domain | W3C validator |