| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version | ||
| Description: A simplification of class abstraction. Commuted form of abid1 2870. See comments there. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 2870 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | 1 | eqcomi 2743 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {cab 2712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 |
| This theorem is referenced by: csbid 3892 csbconstg 3898 csbie 3914 abss 4043 ssab 4044 abssi 4050 notab 4294 dfrab3 4299 notrab 4302 eusn 4710 uniintsn 4965 iunidOLD 5041 axrep6g 5270 csbexg 5290 imai 6072 dffv4 6882 orduniss2 7834 dfixp 8920 euen1b 9049 modom2 9262 pwfir 9336 infmap2 10238 cshwsexaOLD 14844 ustfn 24155 ustn0 24174 lrrecse 27910 lrrecpred 27912 fpwrelmap 32671 eulerpartlemgvv 34312 ballotlem2 34425 dffv5 35859 ptrest 37560 cnambfre 37609 cnvepresex 38269 pmapglb 39706 polval2N 39842 rngunsnply 43119 iocinico 43162 |
| Copyright terms: Public domain | W3C validator |