| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version | ||
| Description: A simplification of class abstraction. Commuted form of abid1 2864. See comments there. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 2864 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: csbid 3872 csbconstg 3878 csbie 3894 abss 4023 ssab 4024 abssi 4029 notab 4273 dfrab3 4278 notrab 4281 eusn 4690 uniintsn 4945 iunidOLD 5020 axrep6g 5240 csbexg 5260 imai 6034 dffv4 6837 orduniss2 7788 dfixp 8849 euen1b 8976 modom2 9168 pwfir 9242 infmap2 10146 cshwsexaOLD 14766 ustfn 24122 ustn0 24141 lrrecse 27889 lrrecpred 27891 fpwrelmap 32706 eulerpartlemgvv 34360 ballotlem2 34473 dffv5 35905 ptrest 37606 cnambfre 37655 cnvepresex 38311 pmapglb 39757 polval2N 39893 rngunsnply 43151 iocinico 43194 |
| Copyright terms: Public domain | W3C validator |