| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version | ||
| Description: A simplification of class abstraction. Commuted form of abid1 2866. See comments there. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 2866 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | 1 | eqcomi 2739 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: csbid 3883 csbconstg 3889 csbie 3905 abss 4034 ssab 4035 abssi 4041 notab 4285 dfrab3 4290 notrab 4293 eusn 4702 uniintsn 4957 iunidOLD 5033 axrep6g 5253 csbexg 5273 imai 6053 dffv4 6862 orduniss2 7816 dfixp 8876 euen1b 9005 modom2 9210 pwfir 9284 infmap2 10188 cshwsexaOLD 14800 ustfn 24095 ustn0 24114 lrrecse 27856 lrrecpred 27858 fpwrelmap 32664 eulerpartlemgvv 34375 ballotlem2 34488 dffv5 35909 ptrest 37610 cnambfre 37659 cnvepresex 38319 pmapglb 39756 polval2N 39892 rngunsnply 43130 iocinico 43173 |
| Copyright terms: Public domain | W3C validator |