![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version |
Description: A simplification of class abstraction. Commuted form of abid1 2875. See comments there. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 2875 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | 1 | eqcomi 2743 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2103 {cab 2711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: csbid 3928 csbconstg 3934 csbie 3951 abss 4080 ssab 4081 abssi 4087 notab 4328 dfrab3 4333 notrab 4336 eusn 4755 uniintsn 5013 iunidOLD 5087 axrep6g 5314 csbexg 5331 imai 6102 dffv4 6916 orduniss2 7865 dfixp 8953 euen1b 9088 modom2 9304 pwfir 9379 infmap2 10282 cshwsexaOLD 14869 ustfn 24224 ustn0 24243 lrrecse 27984 lrrecpred 27986 fpwrelmap 32739 eulerpartlemgvv 34333 ballotlem2 34445 dffv5 35880 ptrest 37527 cnambfre 37576 cnvepresex 38238 pmapglb 39675 polval2N 39811 rngunsnply 43070 iocinico 43113 |
Copyright terms: Public domain | W3C validator |