Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version |
Description: A simplification of class abstraction. Commuted form of abid1 2881. See comments there. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 2881 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | 1 | eqcomi 2747 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: csbid 3845 csbconstg 3851 csbie 3868 abss 3994 ssab 3995 abssi 4003 notab 4238 dfrab3 4243 notrab 4245 eusn 4666 uniintsn 4918 iunid 4990 axrep6g 5217 csbexg 5234 imai 5982 dffv4 6771 orduniss2 7680 dfixp 8687 euen1b 8817 pwfir 8959 modom2 9024 infmap2 9974 cshwsexa 14537 ustfn 23353 ustn0 23372 fpwrelmap 31068 eulerpartlemgvv 32343 ballotlem2 32455 lrrecse 34099 lrrecpred 34101 dffv5 34226 ptrest 35776 cnambfre 35825 cnvepresex 36469 pmapglb 37784 polval2N 37920 rngunsnply 40998 iocinico 41043 |
Copyright terms: Public domain | W3C validator |