Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abid2 | Structured version Visualization version GIF version |
Description: A simplification of class abstraction. Commuted form of abid1 2880. See comments there. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
abid2 | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 2880 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | 1 | eqcomi 2747 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: csbid 3841 csbconstg 3847 csbie 3864 abss 3990 ssab 3991 abssi 3999 notab 4235 dfrab3 4240 notrab 4242 eusn 4663 uniintsn 4915 iunid 4986 csbexg 5229 imai 5971 dffv4 6753 orduniss2 7655 dfixp 8645 euen1b 8771 pwfir 8921 modom2 8954 infmap2 9905 cshwsexa 14465 ustfn 23261 ustn0 23280 fpwrelmap 30970 eulerpartlemgvv 32243 ballotlem2 32355 lrrecse 34026 lrrecpred 34028 dffv5 34153 ptrest 35703 cnambfre 35752 cnvepresex 36396 pmapglb 37711 polval2N 37847 rngunsnply 40914 iocinico 40959 |
Copyright terms: Public domain | W3C validator |