![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsb1 | Structured version Visualization version GIF version |
Description: Substitution for the left-hand side in an equality. Class version of equsb3 2102. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
Ref | Expression |
---|---|
eqsb1 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2737 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 = 𝐴 ↔ 𝑤 = 𝐴)) | |
2 | eqeq1 2737 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝐴 ↔ 𝑦 = 𝐴)) | |
3 | 1, 2 | sbievw2 2100 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-cleq 2725 |
This theorem is referenced by: sbhypf 3539 pm13.183 3657 eqsbc1 3827 |
Copyright terms: Public domain | W3C validator |