MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsb1 Structured version   Visualization version   GIF version

Theorem eqsb1 2870
Description: Substitution for the left-hand side in an equality. Class version of equsb3 2103. (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem eqsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2744 . 2 (𝑥 = 𝑤 → (𝑥 = 𝐴𝑤 = 𝐴))
2 eqeq1 2744 . 2 (𝑤 = 𝑦 → (𝑤 = 𝐴𝑦 = 𝐴))
31, 2sbievw2 2098 1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-cleq 2732
This theorem is referenced by:  sbhypf  3556  pm13.183  3679  eqsbc1  3854
  Copyright terms: Public domain W3C validator