MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsb1 Structured version   Visualization version   GIF version

Theorem eqsb1 2865
Description: Substitution for the left-hand side in an equality. Class version of equsb3 2101. (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem eqsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . 2 (𝑥 = 𝑤 → (𝑥 = 𝐴𝑤 = 𝐴))
2 eqeq1 2742 . 2 (𝑤 = 𝑦 → (𝑤 = 𝐴𝑦 = 𝐴))
31, 2sbievw2 2099 1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-cleq 2730
This theorem is referenced by:  pm13.183  3597  eqsbc1  3765
  Copyright terms: Public domain W3C validator