![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelneq2 | Structured version Visualization version GIF version |
Description: A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
nelneq2 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2868 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpcd 241 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = 𝐶 → 𝐴 ∈ 𝐶)) |
3 | 2 | con3dimp 398 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-cleq 2793 df-clel 2796 |
This theorem is referenced by: ssnelpss 3916 opthwiener 5171 ssfin4 9421 pwxpndom2 9776 fzneuz 12674 hauspwpwf1 22118 topdifinffinlem 33692 clsk1indlem1 39120 |
Copyright terms: Public domain | W3C validator |