![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelneq2 | Structured version Visualization version GIF version |
Description: A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
nelneq2 | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpcd 249 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 = 𝐶 → 𝐴 ∈ 𝐶)) |
3 | 2 | con3dimp 408 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: nelne1 3037 ssnelpss 4124 opthwiener 5524 ssfin4 10348 pwxpndom2 10703 fzneuz 13645 hauspwpwf1 24011 topdifinffinlem 37330 clsk1indlem1 44035 |
Copyright terms: Public domain | W3C validator |