MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelneq2 Structured version   Visualization version   GIF version

Theorem nelneq2 2858
Description: A way of showing two classes are not equal. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nelneq2 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵 = 𝐶)

Proof of Theorem nelneq2
StepHypRef Expression
1 eleq2 2821 . . 3 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
21biimpcd 252 . 2 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
32con3dimp 412 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787  df-cleq 2730  df-clel 2811
This theorem is referenced by:  nelne1  3030  ssnelpss  4000  opthwiener  5368  ssfin4  9803  pwxpndom2  10158  fzneuz  13072  hauspwpwf1  22731  topdifinffinlem  35130  clsk1indlem1  41185
  Copyright terms: Public domain W3C validator