MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm13.183 Structured version   Visualization version   GIF version

Theorem pm13.183 3679
Description: Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only 𝐴 is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.) Avoid ax-13 2380. (Revised by Wolf Lammen, 29-Apr-2023.)
Assertion
Ref Expression
pm13.183 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem pm13.183
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2744 . 2 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐴 = 𝐵))
2 eqeq2 2752 . . . 4 (𝑦 = 𝐴 → (𝑧 = 𝑦𝑧 = 𝐴))
32bibi1d 343 . . 3 (𝑦 = 𝐴 → ((𝑧 = 𝑦𝑧 = 𝐵) ↔ (𝑧 = 𝐴𝑧 = 𝐵)))
43albidv 1919 . 2 (𝑦 = 𝐴 → (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
5 eqeq2 2752 . . . 4 (𝑦 = 𝐵 → (𝑧 = 𝑦𝑧 = 𝐵))
65alrimiv 1926 . . 3 (𝑦 = 𝐵 → ∀𝑧(𝑧 = 𝑦𝑧 = 𝐵))
7 stdpc4 2068 . . . 4 (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) → [𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵))
8 sbbi 2312 . . . . 5 ([𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵))
9 equsb1v 2105 . . . . . . 7 [𝑦 / 𝑧]𝑧 = 𝑦
109tbt 369 . . . . . 6 ([𝑦 / 𝑧]𝑧 = 𝐵 ↔ ([𝑦 / 𝑧]𝑧 = 𝐵 ↔ [𝑦 / 𝑧]𝑧 = 𝑦))
11 bicom 222 . . . . . 6 (([𝑦 / 𝑧]𝑧 = 𝐵 ↔ [𝑦 / 𝑧]𝑧 = 𝑦) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵))
1210, 11bitri 275 . . . . 5 ([𝑦 / 𝑧]𝑧 = 𝐵 ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵))
13 eqsb1 2870 . . . . 5 ([𝑦 / 𝑧]𝑧 = 𝐵𝑦 = 𝐵)
148, 12, 133bitr2i 299 . . . 4 ([𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵) ↔ 𝑦 = 𝐵)
157, 14sylib 218 . . 3 (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) → 𝑦 = 𝐵)
166, 15impbii 209 . 2 (𝑦 = 𝐵 ↔ ∀𝑧(𝑧 = 𝑦𝑧 = 𝐵))
171, 4, 16vtoclbg 3569 1 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  [wsb 2064  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819
This theorem is referenced by:  mpo2eqb  7582
  Copyright terms: Public domain W3C validator