Step | Hyp | Ref
| Expression |
1 | | eqeq1 2742 |
. 2
⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) |
2 | | eqeq2 2750 |
. . . 4
⊢ (𝑦 = 𝐴 → (𝑧 = 𝑦 ↔ 𝑧 = 𝐴)) |
3 | 2 | bibi1d 343 |
. . 3
⊢ (𝑦 = 𝐴 → ((𝑧 = 𝑦 ↔ 𝑧 = 𝐵) ↔ (𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) |
4 | 3 | albidv 1924 |
. 2
⊢ (𝑦 = 𝐴 → (∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵) ↔ ∀𝑧(𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) |
5 | | eqeq2 2750 |
. . . 4
⊢ (𝑦 = 𝐵 → (𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) |
6 | 5 | alrimiv 1931 |
. . 3
⊢ (𝑦 = 𝐵 → ∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) |
7 | | stdpc4 2072 |
. . . 4
⊢
(∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵) → [𝑦 / 𝑧](𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) |
8 | | sbbi 2308 |
. . . . 5
⊢ ([𝑦 / 𝑧](𝑧 = 𝑦 ↔ 𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵)) |
9 | | eqsb1 2865 |
. . . . . . 7
⊢ ([𝑦 / 𝑧]𝑧 = 𝐵 ↔ 𝑦 = 𝐵) |
10 | 9 | bibi2i 337 |
. . . . . 6
⊢ (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ 𝑦 = 𝐵)) |
11 | | equsb1v 2105 |
. . . . . . 7
⊢ [𝑦 / 𝑧]𝑧 = 𝑦 |
12 | | biimp 214 |
. . . . . . 7
⊢ (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ 𝑦 = 𝐵) → ([𝑦 / 𝑧]𝑧 = 𝑦 → 𝑦 = 𝐵)) |
13 | 11, 12 | mpi 20 |
. . . . . 6
⊢ (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
14 | 10, 13 | sylbi 216 |
. . . . 5
⊢ (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) → 𝑦 = 𝐵) |
15 | 8, 14 | sylbi 216 |
. . . 4
⊢ ([𝑦 / 𝑧](𝑧 = 𝑦 ↔ 𝑧 = 𝐵) → 𝑦 = 𝐵) |
16 | 7, 15 | syl 17 |
. . 3
⊢
(∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵) → 𝑦 = 𝐵) |
17 | 6, 16 | impbii 208 |
. 2
⊢ (𝑦 = 𝐵 ↔ ∀𝑧(𝑧 = 𝑦 ↔ 𝑧 = 𝐵)) |
18 | 1, 4, 17 | vtoclbg 3497 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) |