MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm13.183 Structured version   Visualization version   GIF version

Theorem pm13.183 3597
Description: Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only 𝐴 is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.) Avoid ax-13 2372. (Revised by Wolf Lammen, 29-Apr-2023.)
Assertion
Ref Expression
pm13.183 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem pm13.183
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . 2 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐴 = 𝐵))
2 eqeq2 2750 . . . 4 (𝑦 = 𝐴 → (𝑧 = 𝑦𝑧 = 𝐴))
32bibi1d 344 . . 3 (𝑦 = 𝐴 → ((𝑧 = 𝑦𝑧 = 𝐵) ↔ (𝑧 = 𝐴𝑧 = 𝐵)))
43albidv 1923 . 2 (𝑦 = 𝐴 → (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
5 eqeq2 2750 . . . 4 (𝑦 = 𝐵 → (𝑧 = 𝑦𝑧 = 𝐵))
65alrimiv 1930 . . 3 (𝑦 = 𝐵 → ∀𝑧(𝑧 = 𝑦𝑧 = 𝐵))
7 stdpc4 2071 . . . 4 (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) → [𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵))
8 sbbi 2305 . . . . 5 ([𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵))
9 eqsb1 2865 . . . . . . 7 ([𝑦 / 𝑧]𝑧 = 𝐵𝑦 = 𝐵)
109bibi2i 338 . . . . . 6 (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵))
11 equsb1v 2103 . . . . . . 7 [𝑦 / 𝑧]𝑧 = 𝑦
12 biimp 214 . . . . . . 7 (([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵) → ([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵))
1311, 12mpi 20 . . . . . 6 (([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵) → 𝑦 = 𝐵)
1410, 13sylbi 216 . . . . 5 (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) → 𝑦 = 𝐵)
158, 14sylbi 216 . . . 4 ([𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵) → 𝑦 = 𝐵)
167, 15syl 17 . . 3 (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) → 𝑦 = 𝐵)
176, 16impbii 208 . 2 (𝑦 = 𝐵 ↔ ∀𝑧(𝑧 = 𝑦𝑧 = 𝐵))
181, 4, 17vtoclbg 3507 1 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  [wsb 2067  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  mpo2eqb  7406
  Copyright terms: Public domain W3C validator