| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsbc1 | Structured version Visualization version GIF version | ||
| Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2861. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2377. (Revised by Wolf Lammen, 29-Apr-2023.) |
| Ref | Expression |
|---|---|
| eqsbc1 | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3772 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
| 2 | eqeq1 2740 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | sbsbc 3774 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝑦 / 𝑥]𝑥 = 𝐵) | |
| 4 | eqsb1 2861 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) | |
| 5 | 3, 4 | bitr3i 277 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) |
| 6 | 1, 2, 5 | vtoclbg 3541 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: eqsbc2 3834 fmptsnd 7166 fvmptnn04if 22792 snfil 23807 f1omptsnlem 37359 mptsnunlem 37361 topdifinffinlem 37370 relowlpssretop 37387 iotavalb 44421 onfrALTlem5 44534 eqsbc2VD 44831 onfrALTlem5VD 44876 |
| Copyright terms: Public domain | W3C validator |