![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsbc1 | Structured version Visualization version GIF version |
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2870. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2380. (Revised by Wolf Lammen, 29-Apr-2023.) |
Ref | Expression |
---|---|
eqsbc1 | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3806 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
2 | eqeq1 2744 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | sbsbc 3808 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝑦 / 𝑥]𝑥 = 𝐵) | |
4 | eqsb1 2870 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) | |
5 | 3, 4 | bitr3i 277 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) |
6 | 1, 2, 5 | vtoclbg 3569 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2064 ∈ wcel 2108 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbceqalOLD 3871 eqsbc2 3873 fmptsnd 7203 fvmptnn04if 22876 snfil 23893 f1omptsnlem 37302 mptsnunlem 37304 topdifinffinlem 37313 relowlpssretop 37330 iotavalb 44399 onfrALTlem5 44513 eqsbc2VD 44811 onfrALTlem5VD 44856 |
Copyright terms: Public domain | W3C validator |