MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc1 Structured version   Visualization version   GIF version

Theorem eqsbc1 3800
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2854. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2370. (Revised by Wolf Lammen, 29-Apr-2023.)
Assertion
Ref Expression
eqsbc1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3755 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵[𝐴 / 𝑥]𝑥 = 𝐵))
2 eqeq1 2733 . 2 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐴 = 𝐵))
3 sbsbc 3757 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐵[𝑦 / 𝑥]𝑥 = 𝐵)
4 eqsb1 2854 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐵𝑦 = 𝐵)
53, 4bitr3i 277 . 2 ([𝑦 / 𝑥]𝑥 = 𝐵𝑦 = 𝐵)
61, 2, 5vtoclbg 3523 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  [wsb 2065  wcel 2109  [wsbc 3753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3754
This theorem is referenced by:  eqsbc2  3817  fmptsnd  7143  fvmptnn04if  22736  snfil  23751  f1omptsnlem  37324  mptsnunlem  37326  topdifinffinlem  37335  relowlpssretop  37352  iotavalb  44419  onfrALTlem5  44532  eqsbc2VD  44829  onfrALTlem5VD  44874
  Copyright terms: Public domain W3C validator