MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc1 Structured version   Visualization version   GIF version

Theorem eqsbc1 3783
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2857. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2372. (Revised by Wolf Lammen, 29-Apr-2023.)
Assertion
Ref Expression
eqsbc1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3738 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵[𝐴 / 𝑥]𝑥 = 𝐵))
2 eqeq1 2735 . 2 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐴 = 𝐵))
3 sbsbc 3740 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐵[𝑦 / 𝑥]𝑥 = 𝐵)
4 eqsb1 2857 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐵𝑦 = 𝐵)
53, 4bitr3i 277 . 2 ([𝑦 / 𝑥]𝑥 = 𝐵𝑦 = 𝐵)
61, 2, 5vtoclbg 3510 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  [wsb 2067  wcel 2111  [wsbc 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3737
This theorem is referenced by:  eqsbc2  3800  fmptsnd  7098  fvmptnn04if  22759  snfil  23774  f1omptsnlem  37370  mptsnunlem  37372  topdifinffinlem  37381  relowlpssretop  37398  iotavalb  44463  onfrALTlem5  44575  eqsbc2VD  44872  onfrALTlem5VD  44917
  Copyright terms: Public domain W3C validator