MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc1 Structured version   Visualization version   GIF version

Theorem eqsbc1 3823
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2851. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2365. (Revised by Wolf Lammen, 29-Apr-2023.)
Assertion
Ref Expression
eqsbc1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3775 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵[𝐴 / 𝑥]𝑥 = 𝐵))
2 eqeq1 2729 . 2 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐴 = 𝐵))
3 sbsbc 3777 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐵[𝑦 / 𝑥]𝑥 = 𝐵)
4 eqsb1 2851 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐵𝑦 = 𝐵)
53, 4bitr3i 276 . 2 ([𝑦 / 𝑥]𝑥 = 𝐵𝑦 = 𝐵)
61, 2, 5vtoclbg 3535 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  [wsb 2059  wcel 2098  [wsbc 3773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-sbc 3774
This theorem is referenced by:  sbceqalOLD  3840  eqsbc2  3842  fmptsnd  7178  fvmptnn04if  22812  snfil  23829  f1omptsnlem  36966  mptsnunlem  36968  topdifinffinlem  36977  relowlpssretop  36994  iotavalb  44014  onfrALTlem5  44128  eqsbc2VD  44426  onfrALTlem5VD  44471
  Copyright terms: Public domain W3C validator