MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbhypf Structured version   Visualization version   GIF version

Theorem sbhypf 3544
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3937. (Contributed by Raph Levien, 10-Apr-2004.) (Proof shortened by Wolf Lammen, 25-Jan-2025.)
Hypotheses
Ref Expression
sbhypf.1 𝑥𝜓
sbhypf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbhypf (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbhypf
StepHypRef Expression
1 sbhypf.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21sbimi 2072 . 2 ([𝑦 / 𝑥]𝑥 = 𝐴 → [𝑦 / 𝑥](𝜑𝜓))
3 eqsb1 2865 . 2 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
4 sbhypf.1 . . . 4 𝑥𝜓
54sbf 2269 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
65sblbis 2308 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
72, 3, 63imtr3i 291 1 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wnf 1780  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-sb 2063  df-cleq 2727
This theorem is referenced by:  mob2  3724  reu2eqd  3745  cbvrabcsfw  3952  cbvopab1  5223  ralxpf  5860  cbviotaw  6523  cbvriotaw  7397  tfisi  7880  ac6sf  10527  nn0ind-raph  12716  ac6sf2  32642  nn0min  32827  ac6gf  37719  fdc1  37733
  Copyright terms: Public domain W3C validator