| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbhypf | Structured version Visualization version GIF version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3907. (Contributed by Raph Levien, 10-Apr-2004.) (Proof shortened by Wolf Lammen, 25-Jan-2025.) |
| Ref | Expression |
|---|---|
| sbhypf.1 | ⊢ Ⅎ𝑥𝜓 |
| sbhypf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbhypf | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbhypf.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbimi 2075 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
| 3 | eqsb1 2861 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) | |
| 4 | sbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 4 | sbf 2272 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 6 | 5 | sblbis 2310 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 7 | 2, 3, 6 | 3imtr3i 291 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-cleq 2728 |
| This theorem is referenced by: mob2 3703 reu2eqd 3724 cbvrabcsfw 3920 cbvopab1 5198 ralxpf 5831 cbviotaw 6496 cbvriotaw 7376 tfisi 7859 ac6sf 10508 nn0ind-raph 12698 ac6sf2 32607 nn0min 32804 ac6gf 37761 fdc1 37775 |
| Copyright terms: Public domain | W3C validator |