Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbhypf | Structured version Visualization version GIF version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3828. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
sbhypf.1 | ⊢ Ⅎ𝑥𝜓 |
sbhypf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbhypf | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2743 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
2 | 1 | equsexvw 2016 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) ↔ 𝑦 = 𝐴) |
3 | nfs1v 2161 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
4 | sbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfbi 1910 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | sbequ12 2253 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
7 | 6 | bicomd 226 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
8 | sbhypf.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | sylan9bb 513 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
10 | 5, 9 | exlimi 2219 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
11 | 2, 10 | sylbir 238 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∃wex 1786 Ⅎwnf 1790 [wsb 2074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-9 2124 ax-10 2145 ax-12 2179 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-cleq 2731 |
This theorem is referenced by: mob2 3619 reu2eqd 3640 cbvrabcsfw 3841 cbvopab1 5113 ralxpf 5699 cbviotaw 6314 cbvriotaw 7148 tfisi 7604 ac6sf 10001 nn0ind-raph 12175 ac6sf2 30546 nn0min 30721 ac6gf 35545 fdc1 35559 |
Copyright terms: Public domain | W3C validator |