MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbhypf Structured version   Visualization version   GIF version

Theorem sbhypf 3539
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3923. (Contributed by Raph Levien, 10-Apr-2004.) (Proof shortened by Wolf Lammen, 25-Jan-2025.)
Hypotheses
Ref Expression
sbhypf.1 𝑥𝜓
sbhypf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbhypf (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbhypf
StepHypRef Expression
1 sbhypf.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21sbimi 2078 . 2 ([𝑦 / 𝑥]𝑥 = 𝐴 → [𝑦 / 𝑥](𝜑𝜓))
3 eqsb1 2860 . 2 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
4 sbhypf.1 . . . 4 𝑥𝜓
54sbf 2263 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
65sblbis 2306 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
72, 3, 63imtr3i 291 1 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wnf 1786  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787  df-sb 2069  df-cleq 2725
This theorem is referenced by:  mob2  3712  reu2eqd  3733  cbvrabcsfw  3938  cbvopab1  5224  ralxpf  5847  cbviotaw  6503  cbvriotaw  7374  tfisi  7848  ac6sf  10484  nn0ind-raph  12662  ac6sf2  31849  nn0min  32026  ac6gf  36600  fdc1  36614
  Copyright terms: Public domain W3C validator