![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbhypf | Structured version Visualization version GIF version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3922. (Contributed by Raph Levien, 10-Apr-2004.) (Proof shortened by Wolf Lammen, 25-Jan-2025.) |
Ref | Expression |
---|---|
sbhypf.1 | ⊢ Ⅎ𝑥𝜓 |
sbhypf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbhypf | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbhypf.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | sbimi 2076 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
3 | eqsb1 2858 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) | |
4 | sbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | sbf 2261 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
6 | 5 | sblbis 2304 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
7 | 2, 3, 6 | 3imtr3i 291 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 Ⅎwnf 1784 [wsb 2066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1781 df-nf 1785 df-sb 2067 df-cleq 2723 |
This theorem is referenced by: mob2 3711 reu2eqd 3732 cbvrabcsfw 3937 cbvopab1 5223 ralxpf 5846 cbviotaw 6502 cbvriotaw 7377 tfisi 7852 ac6sf 10490 nn0ind-raph 12669 ac6sf2 32131 nn0min 32308 ac6gf 36916 fdc1 36930 |
Copyright terms: Public domain | W3C validator |