![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbhypf | Structured version Visualization version GIF version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3747. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
sbhypf.1 | ⊢ Ⅎ𝑥𝜓 |
sbhypf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbhypf | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2803 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
2 | 1 | equsexvw 2104 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) ↔ 𝑦 = 𝐴) |
3 | nfs1v 2303 | . . . 4 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
4 | sbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfbi 2003 | . . 3 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | sbequ12 2278 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
7 | 6 | bicomd 215 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
8 | sbhypf.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | sylan9bb 506 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
10 | 5, 9 | exlimi 2252 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
11 | 2, 10 | sylbir 227 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∃wex 1875 Ⅎwnf 1879 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-cleq 2792 |
This theorem is referenced by: mob2 3582 reu2eqd 3601 cbvmptf 4941 ralxpf 5472 tfisi 7292 ac6sf 9599 nn0ind-raph 11767 ac6sf2 29948 nn0min 30085 ac6gf 34015 fdc1 34029 |
Copyright terms: Public domain | W3C validator |