MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbhypf Structured version   Visualization version   GIF version

Theorem sbhypf 3496
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3866. (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
sbhypf.1 𝑥𝜓
sbhypf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbhypf (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbhypf
StepHypRef Expression
1 eqeq1 2740 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
21equsexvw 2006 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) ↔ 𝑦 = 𝐴)
3 nfs1v 2151 . . . 4 𝑥[𝑦 / 𝑥]𝜑
4 sbhypf.1 . . . 4 𝑥𝜓
53, 4nfbi 1904 . . 3 𝑥([𝑦 / 𝑥]𝜑𝜓)
6 sbequ12 2242 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
76bicomd 222 . . . 4 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
8 sbhypf.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
97, 8sylan9bb 511 . . 3 ((𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
105, 9exlimi 2208 . 2 (∃𝑥(𝑥 = 𝑦𝑥 = 𝐴) → ([𝑦 / 𝑥]𝜑𝜓))
112, 10sylbir 234 1 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  wnf 1783  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-cleq 2728
This theorem is referenced by:  mob2  3655  reu2eqd  3676  cbvrabcsfw  3881  cbvopab1  5156  ralxpf  5768  cbviotaw  6417  cbvriotaw  7273  tfisi  7737  ac6sf  10295  nn0ind-raph  12470  ac6sf2  31009  nn0min  31183  ac6gf  35938  fdc1  35952
  Copyright terms: Public domain W3C validator