| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbhypf | Structured version Visualization version GIF version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3873. (Contributed by Raph Levien, 10-Apr-2004.) (Proof shortened by Wolf Lammen, 25-Jan-2025.) |
| Ref | Expression |
|---|---|
| sbhypf.1 | ⊢ Ⅎ𝑥𝜓 |
| sbhypf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbhypf | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbhypf.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | sbimi 2077 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
| 3 | eqsb1 2857 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) | |
| 4 | sbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 4 | sbf 2273 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 6 | 5 | sblbis 2310 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 7 | 2, 3, 6 | 3imtr3i 291 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-cleq 2723 |
| This theorem is referenced by: mob2 3669 reu2eqd 3690 cbvrabcsfw 3886 cbvopab1 5163 ralxpf 5785 cbviotaw 6444 cbvriotaw 7312 tfisi 7789 ac6sf 10380 nn0ind-raph 12573 ac6sf2 32605 nn0min 32803 ac6gf 37782 fdc1 37796 |
| Copyright terms: Public domain | W3C validator |