MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsndOLD Structured version   Visualization version   GIF version

Theorem eqsndOLD 4856
Description: Obsolete version of eqsnd 4855 as of 3-Jul-2025. (Contributed by Thierry Arnoux, 10-May-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eqsnd.1 ((𝜑𝑥𝐴) → 𝑥 = 𝐵)
eqsnd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
eqsndOLD (𝜑𝐴 = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem eqsndOLD
StepHypRef Expression
1 eqsnd.1 . . . 4 ((𝜑𝑥𝐴) → 𝑥 = 𝐵)
2 simpr 484 . . . . 5 ((𝜑𝑥 = 𝐵) → 𝑥 = 𝐵)
3 eqsnd.2 . . . . . 6 (𝜑𝐵𝐴)
43adantr 480 . . . . 5 ((𝜑𝑥 = 𝐵) → 𝐵𝐴)
52, 4eqeltrd 2844 . . . 4 ((𝜑𝑥 = 𝐵) → 𝑥𝐴)
61, 5impbida 800 . . 3 (𝜑 → (𝑥𝐴𝑥 = 𝐵))
7 velsn 4664 . . 3 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
86, 7bitr4di 289 . 2 (𝜑 → (𝑥𝐴𝑥 ∈ {𝐵}))
98eqrdv 2738 1 (𝜑𝐴 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sn 4649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator