| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsndOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of eqsnd 4811 as of 3-Jul-2025. (Contributed by Thierry Arnoux, 10-May-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eqsnd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) |
| eqsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqsndOLD | ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsnd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
| 3 | eqsnd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) |
| 5 | 2, 4 | eqeltrd 2835 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
| 6 | 1, 5 | impbida 800 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 = 𝐵)) |
| 7 | velsn 4622 | . . 3 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 8 | 6, 7 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) |
| 9 | 8 | eqrdv 2734 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-sn 4607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |