| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsnd | Structured version Visualization version GIF version | ||
| Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.) (Proof shortened by SN, 3-Jul-2025.) |
| Ref | Expression |
|---|---|
| eqsnd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) |
| eqsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqsnd | ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsnd.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) | |
| 2 | 1 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 3 | eqsnd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 4 | 3 | ne0d 4292 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) |
| 5 | eqsn 4781 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 = {𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 = 𝐵)) |
| 7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4283 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-v 3438 df-dif 3905 df-ss 3919 df-nul 4284 df-sn 4577 |
| This theorem is referenced by: 0ringidl 33384 lbsdiflsp0 33637 fiabv 42575 thinchom 49465 |
| Copyright terms: Public domain | W3C validator |