Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqsnd | Structured version Visualization version GIF version |
Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.) |
Ref | Expression |
---|---|
eqsnd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) |
eqsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
eqsnd | ⊢ (𝜑 → 𝐴 = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsnd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) | |
2 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
3 | eqsnd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) |
5 | 2, 4 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
6 | 1, 5 | impbida 797 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 = 𝐵)) |
7 | velsn 4574 | . . 3 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
8 | 6, 7 | bitr4di 288 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) |
9 | 8 | eqrdv 2736 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sn 4559 |
This theorem is referenced by: 0ringidl 31507 lbsdiflsp0 31609 |
Copyright terms: Public domain | W3C validator |