![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqsnd | Structured version Visualization version GIF version |
Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.) |
Ref | Expression |
---|---|
eqsnd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) |
eqsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
eqsnd | ⊢ (𝜑 → 𝐴 = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsnd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 = 𝐵) | |
2 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
3 | eqsnd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | 3 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) |
5 | 2, 4 | eqeltrd 2859 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
6 | 1, 5 | impbida 791 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 = 𝐵)) |
7 | vex 3401 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | 7 | elsn 4413 | . . 3 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) |
9 | 6, 8 | syl6bbr 281 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝐵})) |
10 | 9 | eqrdv 2776 | 1 ⊢ (𝜑 → 𝐴 = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {csn 4398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-sn 4399 |
This theorem is referenced by: lbsdiflsp0 30448 |
Copyright terms: Public domain | W3C validator |