MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsnd Structured version   Visualization version   GIF version

Theorem eqsnd 4783
Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.) (Proof shortened by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
eqsnd.1 ((𝜑𝑥𝐴) → 𝑥 = 𝐵)
eqsnd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
eqsnd (𝜑𝐴 = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem eqsnd
StepHypRef Expression
1 eqsnd.1 . . 3 ((𝜑𝑥𝐴) → 𝑥 = 𝐵)
21ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 𝑥 = 𝐵)
3 eqsnd.2 . . . 4 (𝜑𝐵𝐴)
43ne0d 4291 . . 3 (𝜑𝐴 ≠ ∅)
5 eqsn 4782 . . 3 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
64, 5syl 17 . 2 (𝜑 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
72, 6mpbird 257 1 (𝜑𝐴 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  c0 4282  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-v 3439  df-dif 3901  df-ss 3915  df-nul 4283  df-sn 4578
This theorem is referenced by:  0ringidl  33395  lbsdiflsp0  33662  fiabv  42657  thinchom  49555
  Copyright terms: Public domain W3C validator