MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsnd Structured version   Visualization version   GIF version

Theorem eqsnd 4855
Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023.) (Proof shortened by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
eqsnd.1 ((𝜑𝑥𝐴) → 𝑥 = 𝐵)
eqsnd.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
eqsnd (𝜑𝐴 = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem eqsnd
StepHypRef Expression
1 eqsnd.1 . . 3 ((𝜑𝑥𝐴) → 𝑥 = 𝐵)
21ralrimiva 3152 . 2 (𝜑 → ∀𝑥𝐴 𝑥 = 𝐵)
3 eqsnd.2 . . . 4 (𝜑𝐵𝐴)
43ne0d 4365 . . 3 (𝜑𝐴 ≠ ∅)
5 eqsn 4854 . . 3 (𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
64, 5syl 17 . 2 (𝜑 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
72, 6mpbird 257 1 (𝜑𝐴 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649
This theorem is referenced by:  0ringidl  33414  lbsdiflsp0  33639  fiabv  42491
  Copyright terms: Public domain W3C validator