MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issn Structured version   Visualization version   GIF version

Theorem issn 4857
Description: A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
issn (∃𝑥𝐴𝑦𝐴 𝑥 = 𝑦 → ∃𝑧 𝐴 = {𝑧})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴,𝑥

Proof of Theorem issn
StepHypRef Expression
1 equcom 2017 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
21a1i 11 . . . . 5 (𝑥𝐴 → (𝑥 = 𝑦𝑦 = 𝑥))
32ralbidv 3184 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 𝑥 = 𝑦 ↔ ∀𝑦𝐴 𝑦 = 𝑥))
4 ne0i 4364 . . . . 5 (𝑥𝐴𝐴 ≠ ∅)
5 eqsn 4854 . . . . 5 (𝐴 ≠ ∅ → (𝐴 = {𝑥} ↔ ∀𝑦𝐴 𝑦 = 𝑥))
64, 5syl 17 . . . 4 (𝑥𝐴 → (𝐴 = {𝑥} ↔ ∀𝑦𝐴 𝑦 = 𝑥))
73, 6bitr4d 282 . . 3 (𝑥𝐴 → (∀𝑦𝐴 𝑥 = 𝑦𝐴 = {𝑥}))
8 sneq 4658 . . . . 5 (𝑧 = 𝑥 → {𝑧} = {𝑥})
98eqeq2d 2751 . . . 4 (𝑧 = 𝑥 → (𝐴 = {𝑧} ↔ 𝐴 = {𝑥}))
109spcegv 3610 . . 3 (𝑥𝐴 → (𝐴 = {𝑥} → ∃𝑧 𝐴 = {𝑧}))
117, 10sylbid 240 . 2 (𝑥𝐴 → (∀𝑦𝐴 𝑥 = 𝑦 → ∃𝑧 𝐴 = {𝑧}))
1211rexlimiv 3154 1 (∃𝑥𝐴𝑦𝐴 𝑥 = 𝑦 → ∃𝑧 𝐴 = {𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649
This theorem is referenced by:  n0snor2el  4858  f1cdmsn  7318
  Copyright terms: Public domain W3C validator