| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issn | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| issn | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃𝑧 𝐴 = {𝑧}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom 2018 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑦 ↔ 𝑦 = 𝑥)) |
| 3 | 2 | ralbidv 3164 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ ∀𝑦 ∈ 𝐴 𝑦 = 𝑥)) |
| 4 | ne0i 4321 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 5 | eqsn 4810 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (𝐴 = {𝑥} ↔ ∀𝑦 ∈ 𝐴 𝑦 = 𝑥)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐴 = {𝑥} ↔ ∀𝑦 ∈ 𝐴 𝑦 = 𝑥)) |
| 7 | 3, 6 | bitr4d 282 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ 𝐴 = {𝑥})) |
| 8 | sneq 4616 | . . . . 5 ⊢ (𝑧 = 𝑥 → {𝑧} = {𝑥}) | |
| 9 | 8 | eqeq2d 2747 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝐴 = {𝑧} ↔ 𝐴 = {𝑥})) |
| 10 | 9 | spcegv 3581 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 = {𝑥} → ∃𝑧 𝐴 = {𝑧})) |
| 11 | 7, 10 | sylbid 240 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃𝑧 𝐴 = {𝑧})) |
| 12 | 11 | rexlimiv 3135 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃𝑧 𝐴 = {𝑧}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ∅c0 4313 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-sn 4607 |
| This theorem is referenced by: n0snor2el 4814 f1cdmsn 7280 |
| Copyright terms: Public domain | W3C validator |