![]() |
Metamath
Proof Explorer Theorem List (p. 48 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28361) |
![]() (28362-29886) |
![]() (29887-43649) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | csbuni 4701 | Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 22-Aug-2018.) |
⊢ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵 | ||
Theorem | elssuni 4702 | An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) | ||
Theorem | unissel 4703 | Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.) |
⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) | ||
Theorem | unissb 4704* | Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | ||
Theorem | uniss2 4705* | A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. See iunss2 4798 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004.) |
⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ 𝐵) | ||
Theorem | unidif 4706* | If the difference 𝐴 ∖ 𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.) |
⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) | ||
Theorem | ssunieq 4707* | Relationship implying union. (Contributed by NM, 10-Nov-1999.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → 𝐴 = ∪ 𝐵) | ||
Theorem | unimax 4708* | Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) | ||
Theorem | pwuni 4709 | A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | ||
Syntax | cint 4710 | Extend class notation to include the intersection of a class. Read: "intersection (of) 𝐴". |
class ∩ 𝐴 | ||
Definition | df-int 4711* | Define the intersection of a class. Definition 7.35 of [TakeutiZaring] p. 44. For example, ∩ {{1, 3}, {1, 8}} = {1}. Compare this with the intersection of two classes, df-in 3798. (Contributed by NM, 18-Aug-1993.) |
⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} | ||
Theorem | dfint2 4712* | Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.) |
⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | ||
Theorem | inteq 4713 | Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | ||
Theorem | inteqi 4714 | Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ∩ 𝐴 = ∩ 𝐵 | ||
Theorem | inteqd 4715 | Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) | ||
Theorem | elint 4716* | Membership in class intersection. (Contributed by NM, 21-May-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | ||
Theorem | elint2 4717* | Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) | ||
Theorem | elintg 4718* | Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) (Proof shortened by JJ, 26-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) | ||
Theorem | elinti 4719 | Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (𝐴 ∈ ∩ 𝐵 → (𝐶 ∈ 𝐵 → 𝐴 ∈ 𝐶)) | ||
Theorem | nfint 4720 | Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥∩ 𝐴 | ||
Theorem | elintab 4721* | Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) | ||
Theorem | elintrab 4722* | Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) | ||
Theorem | elintrabg 4723* | Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥))) | ||
Theorem | int0 4724 | The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) (Proof shortened by JJ, 26-Jul-2021.) |
⊢ ∩ ∅ = V | ||
Theorem | intss1 4725 | An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) | ||
Theorem | ssint 4726* | Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) | ||
Theorem | ssintab 4727* | Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) | ||
Theorem | ssintub 4728* | Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.) |
⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} | ||
Theorem | ssmin 4729* | Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.) |
⊢ 𝐴 ⊆ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} | ||
Theorem | intmin 4730* | Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) | ||
Theorem | intss 4731 | Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) | ||
Theorem | intssuni 4732 | The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | ||
Theorem | ssintrab 4733* | Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.) |
⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) | ||
Theorem | unissint 4734 | If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 4747). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (∪ 𝐴 ⊆ ∩ 𝐴 ↔ (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) | ||
Theorem | intssuni2 4735 | Subclass relationship for intersection and union. (Contributed by NM, 29-Jul-2006.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ ∪ 𝐵) | ||
Theorem | intminss 4736* | Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) | ||
Theorem | intmin2 4737* | Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 | ||
Theorem | intmin3 4738* | Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | ||
Theorem | intmin4 4739* | Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.) |
⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) | ||
Theorem | intab 4740* | The intersection of a special case of a class abstraction. 𝑦 may be free in 𝜑 and 𝐴, which can be thought of a 𝜑(𝑦) and 𝐴(𝑦). Typically, abrexex2 7426 or abexssex 7427 can be used to satisfy the second hypothesis. (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
⊢ 𝐴 ∈ V & ⊢ {𝑥 ∣ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴)} ∈ V ⇒ ⊢ ∩ {𝑥 ∣ ∀𝑦(𝜑 → 𝐴 ∈ 𝑥)} = {𝑥 ∣ ∃𝑦(𝜑 ∧ 𝑥 = 𝐴)} | ||
Theorem | int0el 4741 | The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.) |
⊢ (∅ ∈ 𝐴 → ∩ 𝐴 = ∅) | ||
Theorem | intun 4742 | The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.) |
⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) | ||
Theorem | intpr 4743 | The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵) | ||
Theorem | intprg 4744 | The intersection of a pair is the intersection of its members. Closed form of intpr 4743. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | ||
Theorem | intsng 4745 | Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) | ||
Theorem | intsn 4746 | The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∩ {𝐴} = 𝐴 | ||
Theorem | uniintsn 4747* | Two ways to express "𝐴 is a singleton." See also en1 8308, en1b 8309, card1 9127, and eusn 4496. (Contributed by NM, 2-Aug-2010.) |
⊢ (∪ 𝐴 = ∩ 𝐴 ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | uniintab 4748 | The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of 𝜑(𝑥). (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃!𝑥𝜑 ↔ ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | ||
Theorem | intunsn 4749 | Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) | ||
Theorem | rint0 4750 | Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) | ||
Theorem | elrint 4751* | Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | ||
Theorem | elrint2 4752* | Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ (𝐴 ∩ ∩ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ 𝑦)) | ||
Syntax | ciun 4753 | Extend class notation to include indexed union. Note: Historically (prior to 21-Oct-2005), set.mm used the notation ∪ 𝑥 ∈ 𝐴𝐵, with the same union symbol as cuni 4671. While that syntax was unambiguous, it did not allow for LALR parsing of the syntax constructions in set.mm. The new syntax uses a distinguished symbol ∪ instead of ∪ and does allow LALR parsing. Thanks to Peter Backes for suggesting this change. |
class ∪ 𝑥 ∈ 𝐴 𝐵 | ||
Syntax | ciin 4754 | Extend class notation to include indexed intersection. Note: Historically (prior to 21-Oct-2005), set.mm used the notation ∩ 𝑥 ∈ 𝐴𝐵, with the same intersection symbol as cint 4710. Although that syntax was unambiguous, it did not allow for LALR parsing of the syntax constructions in set.mm. The new syntax uses a distinguished symbol ∩ instead of ∩ and does allow LALR parsing. Thanks to Peter Backes for suggesting this change. |
class ∩ 𝑥 ∈ 𝐴 𝐵 | ||
Definition | df-iun 4755* | Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥 ∈ 𝐴 is written as a subscript or underneath a union symbol ∪. We use a special union symbol ∪ to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same distinct variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a distinct variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 4787. Theorem uniiun 4806 provides a definition of ordinary union in terms of indexed union. Theorems fniunfv 6777 and funiunfv 6778 are useful when 𝐵 is a function. (Contributed by NM, 27-Jun-1998.) |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | ||
Definition | df-iin 4756* | Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4755. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4788. Theorem intiin 4807 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.) |
⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | ||
Theorem | eliun 4757* | Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) | ||
Theorem | eliin 4758* | Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | ||
Theorem | eliuni 4759* | Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021.) |
⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐸 ∈ 𝐶) → 𝐸 ∈ ∪ 𝑥 ∈ 𝐷 𝐵) | ||
Theorem | iuncom 4760* | Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.) |
⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 | ||
Theorem | iuncom4 4761 | Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.) |
⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝐵 = ∪ ∪ 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | iunconst 4762* | Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝐴 ≠ ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) | ||
Theorem | iinconst 4763* | Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Mario Carneiro, 6-Feb-2015.) |
⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) | ||
Theorem | iuniin 4764* | Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 | ||
Theorem | iunss1 4765* | Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | iinss1 4766* | Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012.) |
⊢ (𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | iuneq1 4767* | Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | iineq1 4768* | Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998.) |
⊢ (𝐴 = 𝐵 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | ss2iun 4769 | Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | iuneq2 4770 | Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | iineq2 4771 | Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | iuneq2i 4772 | Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 | ||
Theorem | iineq2i 4773 | Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.) |
⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶 | ||
Theorem | iineq2d 4774 | Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | iuneq2dv 4775* | Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | iineq2dv 4776* | Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | iuneq12df 4777 | Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | iuneq1d 4778* | Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | iuneq12d 4779* | Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | iuneq2d 4780* | Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | nfiun 4781 | Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | nfiin 4782 | Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | nfiu1 4783 | Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) |
⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | nfii1 4784 | Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | dfiun2g 4785* | Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | ||
Theorem | dfiin2g 4786* | Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Jeff Hankins, 27-Aug-2009.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | ||
Theorem | dfiun2 4787* | Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | ||
Theorem | dfiin2 4788* | Alternate definition of indexed intersection when 𝐵 is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | ||
Theorem | dfiunv2 4789* | Define double indexed union. (Contributed by FL, 6-Nov-2013.) |
⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} | ||
Theorem | cbviun 4790* | Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 | ||
Theorem | cbviin 4791* | Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 | ||
Theorem | cbviunv 4792* | Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 | ||
Theorem | cbviinv 4793* | Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 | ||
Theorem | iunss 4794* | Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
Theorem | ssiun 4795* | Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | ssiun2 4796 | Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | ssiun2s 4797* | Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | iunss2 4798* | A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 4705. (Contributed by NM, 9-Dec-2004.) |
⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) | ||
Theorem | iunab 4799* | The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.) |
⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} | ||
Theorem | iunrab 4800* | The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |