HomeHome Metamath Proof Explorer
Theorem List (p. 48 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45333)
 

Theorem List for Metamath Proof Explorer - 4701-4800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsnssi 4701 The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.)
(𝐴𝐵 → {𝐴} ⊆ 𝐵)
 
Theoremsnssd 4702 The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝐴𝐵)       (𝜑 → {𝐴} ⊆ 𝐵)
 
Theoremdifsnid 4703 If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
(𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
Theoremeldifeldifsn 4704 An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.)
((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
 
Theorempw0 4705 Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝒫 ∅ = {∅}
 
Theorempwpw0 4706 Compute the power set of the power set of the empty set. (See pw0 4705 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48. Although this theorem is a special case of pwsn 4792, we have chosen to show a direct elementary proof. (Contributed by NM, 7-Aug-1994.)
𝒫 {∅} = {∅, {∅}}
 
Theoremsnsspr1 4707 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.)
{𝐴} ⊆ {𝐴, 𝐵}
 
Theoremsnsspr2 4708 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
{𝐵} ⊆ {𝐴, 𝐵}
 
Theoremsnsstp1 4709 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐴} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremsnsstp2 4710 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐵} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremsnsstp3 4711 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐶} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremprssg 4712 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
 
Theoremprss 4713 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
 
Theoremprssi 4714 A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
 
Theoremprssd 4715 Deduction version of prssi 4714: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)       (𝜑 → {𝐴, 𝐵} ⊆ 𝐶)
 
Theoremprsspwg 4716 An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
Theoremssprss 4717 A pair as subset of a pair. (Contributed by AV, 26-Oct-2020.)
((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
 
Theoremssprsseq 4718 A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020.)
((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷}))
 
Theoremsssn 4719 The subsets of a singleton. (Contributed by NM, 24-Apr-2004.)
(𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
 
Theoremssunsn2 4720 The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 4795. (Contributed by Mario Carneiro, 2-Jul-2016.)
((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
 
Theoremssunsn 4721 Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
 
Theoremeqsn 4722* Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) (Proof shortened by JJ, 23-Jul-2021.)
(𝐴 ≠ ∅ → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
 
Theoremissn 4723* A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020.)
(∃𝑥𝐴𝑦𝐴 𝑥 = 𝑦 → ∃𝑧 𝐴 = {𝑧})
 
Theoremn0snor2el 4724* A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020.)
(𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
 
Theoremssunpr 4725 Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶, 𝐷})) ↔ ((𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})) ∨ (𝐴 = (𝐵 ∪ {𝐷}) ∨ 𝐴 = (𝐵 ∪ {𝐶, 𝐷}))))
 
Theoremsspr 4726 The subsets of a pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Mario Carneiro, 2-Jul-2016.)
(𝐴 ⊆ {𝐵, 𝐶} ↔ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})))
 
Theoremsstp 4727 The subsets of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.)
(𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))))
 
Theoremtpss 4728 An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
 
Theoremtpssi 4729 An unordered triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
 
Theoremsneqrg 4730 Closed form of sneqr 4731. (Contributed by Scott Fenton, 1-Apr-2011.) (Proof shortened by JJ, 23-Jul-2021.)
(𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
 
Theoremsneqr 4731 If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
𝐴 ∈ V       ({𝐴} = {𝐵} → 𝐴 = 𝐵)
 
Theoremsnsssn 4732 If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
𝐴 ∈ V       ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)
 
Theoremmosneq 4733* There exists at most one set whose singleton is equal to a given class. See also moeq 3646. (Contributed by BJ, 24-Sep-2022.)
∃*𝑥{𝑥} = 𝐴
 
Theoremsneqbg 4734 Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.)
(𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
 
Theoremsnsspw 4735 The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.)
{𝐴} ⊆ 𝒫 𝐴
 
Theoremprsspw 4736 An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))
 
Theorempreq1b 4737 Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same second element iff the first elements are equal. (Contributed by AV, 18-Dec-2020.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵))
 
Theorempreq2b 4738 Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵))
 
Theorempreqr1 4739 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
 
Theorempreqr2 4740 Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)
 
Theorempreq12b 4741 Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
 
Theoremopthpr 4742 An unordered pair has the ordered pair property (compare opth 5333) under certain conditions. (Contributed by NM, 27-Mar-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (𝐴𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theorempreqr1g 4743 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 4739. (Contributed by AV, 29-Jan-2021.) (Revised by AV, 18-Sep-2021.)
((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))
 
Theorempreq12bg 4744 Closed form of preq12b 4741. (Contributed by Scott Fenton, 28-Mar-2014.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
 
Theoremprneimg 4745 Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
(((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
 
Theoremprnebg 4746 A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.)
(((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
 
Theorempr1eqbg 4747 A (proper) pair is equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
(((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶}))
 
Theorempr1nebg 4748 A (proper) pair is not equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
(((𝐴𝑈𝐵𝑉𝐶𝑋) ∧ 𝐴𝐵) → (𝐴𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶}))
 
Theorempreqsnd 4749 Equivalence for a pair equal to a singleton, deduction form. (Contributed by Thierry Arnoux, 27-Dec-2016.) (Revised by AV, 13-Jun-2022.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)       (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))
 
Theoremprnesn 4750 A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022.)
((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≠ {𝐶})
 
Theoremprneprprc 4751 A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022.)
(((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
 
Theorempreqsn 4752 Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 12-Jun-2022.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
 
Theorempreq12nebg 4753 Equality relationship for two proper unordered pairs. (Contributed by AV, 12-Jun-2022.)
((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
 
Theoremprel12g 4754 Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) (Revised by AV, 9-Dec-2018.) (Revised by AV, 12-Jun-2022.)
((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷})))
 
Theoremopthprneg 4755 An unordered pair has the ordered pair property (compare opth 5333) under certain conditions. Variant of opthpr 4742 in closed form. (Contributed by AV, 13-Jun-2022.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremelpreqprlem 4756* Lemma for elpreqpr 4757. (Contributed by Scott Fenton, 7-Dec-2020.) (Revised by AV, 9-Dec-2020.)
(𝐵𝑉 → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})
 
Theoremelpreqpr 4757* Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020.)
(𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
 
Theoremelpreqprb 4758* A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.)
(𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
 
Theoremelpr2elpr 4759* For an element 𝐴 of an unordered pair which is a subset of a given set 𝑉, there is another (maybe the same) element 𝑏 of the given set 𝑉 being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.)
((𝑋𝑉𝑌𝑉𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
 
Theoremdfopif 4760 Rewrite df-op 4532 using if. When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
 
Theoremdfopg 4761 Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
 
Theoremdfop 4762 Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
 
Theoremopeq1 4763 Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-10 2142, ax-11 2158, ax-12 2175. (Revised by Gino Giotto, 26-May-2024.)
(𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
 
Theoremopeq1OLD 4764 Obsolete version of opeq1 4763 as of 25-May-2024. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
 
Theoremopeq2 4765 Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-10 2142, ax-11 2158, ax-12 2175. (Revised by Gino Giotto, 26-May-2024.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
 
Theoremopeq2OLD 4766 Obsolete version of opeq2 4765 as of 25-May-2024. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
 
Theoremopeq12 4767 Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.)
((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
 
Theoremopeq1i 4768 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
𝐴 = 𝐵       𝐴, 𝐶⟩ = ⟨𝐵, 𝐶
 
Theoremopeq2i 4769 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
𝐴 = 𝐵       𝐶, 𝐴⟩ = ⟨𝐶, 𝐵
 
Theoremopeq12i 4770 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
𝐴 = 𝐵    &   𝐶 = 𝐷       𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
 
Theoremopeq1d 4771 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
 
Theoremopeq2d 4772 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
 
Theoremopeq12d 4773 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
 
Theoremoteq1 4774 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
 
Theoremoteq2 4775 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
 
Theoremoteq3 4776 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
 
Theoremoteq1d 4777 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
 
Theoremoteq2d 4778 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
 
Theoremoteq3d 4779 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
 
Theoremoteq123d 4780 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)    &   (𝜑𝐸 = 𝐹)       (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
 
Theoremnfop 4781 Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴, 𝐵
 
Theoremnfopd 4782 Deduction version of bound-variable hypothesis builder nfop 4781. This shows how the deduction version of a not-free theorem such as nfop 4781 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴, 𝐵⟩)
 
Theoremcsbopg 4783 Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015.) (Revised by Mario Carneiro, 29-Oct-2015.) (Revised by ML, 25-Oct-2020.)
(𝐴𝑉𝐴 / 𝑥𝐶, 𝐷⟩ = ⟨𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩)
 
Theoremopidg 4784 The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Closed form of opid 4785. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.)
(𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})
 
Theoremopid 4785 The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Inference form of opidg 4784. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.)
𝐴 ∈ V       𝐴, 𝐴⟩ = {{𝐴}}
 
Theoremralunsn 4786* Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐵 → (𝜑𝜓))       (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
 
Theorem2ralunsn 4787* Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜓𝜃))       (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
 
Theoremopprc 4788 Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
(¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremopprc1 4789 Expansion of an ordered pair when the first member is a proper class. See also opprc 4788. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremopprc2 4790 Expansion of an ordered pair when the second member is a proper class. See also opprc 4788. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremoprcl 4791 If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorempwsn 4792 The power set of a singleton. (Contributed by NM, 5-Jun-2006.)
𝒫 {𝐴} = {∅, {𝐴}}
 
TheorempwsnOLD 4793 Obsolete version of pwsn 4792 as of 14-Apr-2024. Note that the proof is essentially the same once one inlines sssn 4719 in the proof of pwsn 4792. (Contributed by NM, 5-Jun-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
𝒫 {𝐴} = {∅, {𝐴}}
 
Theorempwpr 4794 The power set of an unordered pair. (Contributed by NM, 1-May-2009.)
𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})
 
Theorempwtp 4795 The power set of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.)
𝒫 {𝐴, 𝐵, 𝐶} = (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}}))
 
Theorempwpwpw0 4796 Compute the power set of the power set of the power set of the empty set. (See also pw0 4705 and pwpw0 4706.) (Contributed by NM, 2-May-2009.)
𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
 
Theorempwv 4797 The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235.

The collection of all classes is of course larger than V, which is the collection of all sets. But 𝒫 V, being a class, cannot contain proper classes, so 𝒫 V is actually no larger than V. This fact is exploited in ncanth 7091. (Contributed by NM, 14-Sep-2003.)

𝒫 V = V
 
Theoremprproe 4798* For an element of a proper unordered pair of elements of a class 𝑉, there is another (different) element of the class 𝑉 which is an element of the proper pair. (Contributed by AV, 18-Dec-2021.)
((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴𝐵 ∧ (𝐴𝑉𝐵𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵})
 
Theorem3elpr2eq 4799 If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021.)
(((𝑋 ∈ {𝐴, 𝐵} ∧ 𝑌 ∈ {𝐴, 𝐵} ∧ 𝑍 ∈ {𝐴, 𝐵}) ∧ (𝑌𝑋𝑍𝑋)) → 𝑌 = 𝑍)
 
2.1.19  The union of a class
 
Syntaxcuni 4800 Extend class notation to include the union of a class. Read: "union (of) 𝐴".
class 𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45333
  Copyright terms: Public domain < Previous  Next >