MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Structured version   Visualization version   GIF version

Theorem frgpmhm 19547
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpmhm.w 𝑊 = (Base‘𝑀)
frgpmhm.g 𝐺 = (freeGrp‘𝐼)
frgpmhm.r = ( ~FG𝐼)
frgpmhm.f 𝐹 = (𝑥𝑊 ↦ [𝑥] )
Assertion
Ref Expression
frgpmhm (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊   𝑥,
Allowed substitution hints:   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem frgpmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 8426 . . . 4 2o ∈ On
2 xpexg 7684 . . . 4 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
31, 2mpan2 689 . . 3 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
4 frgpmhm.m . . . 4 𝑀 = (freeMnd‘(𝐼 × 2o))
54frmdmnd 18669 . . 3 ((𝐼 × 2o) ∈ V → 𝑀 ∈ Mnd)
63, 5syl 17 . 2 (𝐼𝑉𝑀 ∈ Mnd)
7 frgpmhm.g . . . 4 𝐺 = (freeGrp‘𝐼)
87frgpgrp 19544 . . 3 (𝐼𝑉𝐺 ∈ Grp)
98grpmndd 18760 . 2 (𝐼𝑉𝐺 ∈ Mnd)
10 frgpmhm.w . . . . . . . . . 10 𝑊 = (Base‘𝑀)
114, 10frmdbas 18662 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → 𝑊 = Word (𝐼 × 2o))
12 wrdexg 14412 . . . . . . . . . 10 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
13 fvi 6917 . . . . . . . . . 10 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1412, 13syl 17 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1511, 14eqtr4d 2779 . . . . . . . 8 ((𝐼 × 2o) ∈ V → 𝑊 = ( I ‘Word (𝐼 × 2o)))
163, 15syl 17 . . . . . . 7 (𝐼𝑉𝑊 = ( I ‘Word (𝐼 × 2o)))
1716eleq2d 2823 . . . . . 6 (𝐼𝑉 → (𝑥𝑊𝑥 ∈ ( I ‘Word (𝐼 × 2o))))
1817biimpa 477 . . . . 5 ((𝐼𝑉𝑥𝑊) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
19 frgpmhm.r . . . . . 6 = ( ~FG𝐼)
20 eqid 2736 . . . . . 6 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
21 eqid 2736 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
227, 19, 20, 21frgpeccl 19543 . . . . 5 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → [𝑥] ∈ (Base‘𝐺))
2318, 22syl 17 . . . 4 ((𝐼𝑉𝑥𝑊) → [𝑥] ∈ (Base‘𝐺))
24 frgpmhm.f . . . 4 𝐹 = (𝑥𝑊 ↦ [𝑥] )
2523, 24fmptd 7062 . . 3 (𝐼𝑉𝐹:𝑊⟶(Base‘𝐺))
2620, 19efger 19500 . . . . . . . 8 Er ( I ‘Word (𝐼 × 2o))
27 ereq2 8656 . . . . . . . . 9 (𝑊 = ( I ‘Word (𝐼 × 2o)) → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2816, 27syl 17 . . . . . . . 8 (𝐼𝑉 → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2926, 28mpbiri 257 . . . . . . 7 (𝐼𝑉 Er 𝑊)
3029adantr 481 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → Er 𝑊)
3110fvexi 6856 . . . . . . 7 𝑊 ∈ V
3231a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → 𝑊 ∈ V)
3330, 32, 24divsfval 17429 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎 ++ 𝑏)) = [(𝑎 ++ 𝑏)] )
34 eqid 2736 . . . . . . . 8 (+g𝑀) = (+g𝑀)
354, 10, 34frmdadd 18665 . . . . . . 7 ((𝑎𝑊𝑏𝑊) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3635adantl 482 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3736fveq2d 6846 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = (𝐹‘(𝑎 ++ 𝑏)))
3830, 32, 24divsfval 17429 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑎) = [𝑎] )
3930, 32, 24divsfval 17429 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑏) = [𝑏] )
4038, 39oveq12d 7375 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ([𝑎] (+g𝐺)[𝑏] ))
4116eleq2d 2823 . . . . . . . . 9 (𝐼𝑉 → (𝑎𝑊𝑎 ∈ ( I ‘Word (𝐼 × 2o))))
4216eleq2d 2823 . . . . . . . . 9 (𝐼𝑉 → (𝑏𝑊𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
4341, 42anbi12d 631 . . . . . . . 8 (𝐼𝑉 → ((𝑎𝑊𝑏𝑊) ↔ (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o)))))
4443biimpa 477 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
45 eqid 2736 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4620, 7, 19, 45frgpadd 19545 . . . . . . 7 ((𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4744, 46syl 17 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4840, 47eqtrd 2776 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = [(𝑎 ++ 𝑏)] )
4933, 37, 483eqtr4d 2786 . . . 4 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5049ralrimivva 3197 . . 3 (𝐼𝑉 → ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5131a1i 11 . . . . 5 (𝐼𝑉𝑊 ∈ V)
5229, 51, 24divsfval 17429 . . . 4 (𝐼𝑉 → (𝐹‘∅) = [∅] )
537, 19frgp0 19542 . . . . 5 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
5453simprd 496 . . . 4 (𝐼𝑉 → [∅] = (0g𝐺))
5552, 54eqtrd 2776 . . 3 (𝐼𝑉 → (𝐹‘∅) = (0g𝐺))
5625, 50, 553jca 1128 . 2 (𝐼𝑉 → (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺)))
574frmd0 18670 . . 3 ∅ = (0g𝑀)
58 eqid 2736 . . 3 (0g𝐺) = (0g𝐺)
5910, 21, 34, 45, 57, 58ismhm 18603 . 2 (𝐹 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺))))
606, 9, 56, 59syl21anbrc 1344 1 (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  c0 4282  cmpt 5188   I cid 5530   × cxp 5631  Oncon0 6317  wf 6492  cfv 6496  (class class class)co 7357  2oc2o 8406   Er wer 8645  [cec 8646  Word cword 14402   ++ cconcat 14458  Basecbs 17083  +gcplusg 17133  0gc0g 17321  Mndcmnd 18556   MndHom cmhm 18599  freeMndcfrmd 18657  Grpcgrp 18748   ~FG cefg 19488  freeGrpcfrgp 19489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-splice 14638  df-reverse 14647  df-s2 14737  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-0g 17323  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-frmd 18659  df-grp 18751  df-efg 19491  df-frgp 19492
This theorem is referenced by:  frgpup3lem  19559
  Copyright terms: Public domain W3C validator