MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Structured version   Visualization version   GIF version

Theorem frgpmhm 19702
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpmhm.w 𝑊 = (Base‘𝑀)
frgpmhm.g 𝐺 = (freeGrp‘𝐼)
frgpmhm.r = ( ~FG𝐼)
frgpmhm.f 𝐹 = (𝑥𝑊 ↦ [𝑥] )
Assertion
Ref Expression
frgpmhm (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊   𝑥,
Allowed substitution hints:   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem frgpmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 8450 . . . 4 2o ∈ On
2 xpexg 7729 . . . 4 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
31, 2mpan2 691 . . 3 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
4 frgpmhm.m . . . 4 𝑀 = (freeMnd‘(𝐼 × 2o))
54frmdmnd 18793 . . 3 ((𝐼 × 2o) ∈ V → 𝑀 ∈ Mnd)
63, 5syl 17 . 2 (𝐼𝑉𝑀 ∈ Mnd)
7 frgpmhm.g . . . 4 𝐺 = (freeGrp‘𝐼)
87frgpgrp 19699 . . 3 (𝐼𝑉𝐺 ∈ Grp)
98grpmndd 18885 . 2 (𝐼𝑉𝐺 ∈ Mnd)
10 frgpmhm.w . . . . . . . . . 10 𝑊 = (Base‘𝑀)
114, 10frmdbas 18786 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → 𝑊 = Word (𝐼 × 2o))
12 wrdexg 14496 . . . . . . . . . 10 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
13 fvi 6940 . . . . . . . . . 10 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1412, 13syl 17 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1511, 14eqtr4d 2768 . . . . . . . 8 ((𝐼 × 2o) ∈ V → 𝑊 = ( I ‘Word (𝐼 × 2o)))
163, 15syl 17 . . . . . . 7 (𝐼𝑉𝑊 = ( I ‘Word (𝐼 × 2o)))
1716eleq2d 2815 . . . . . 6 (𝐼𝑉 → (𝑥𝑊𝑥 ∈ ( I ‘Word (𝐼 × 2o))))
1817biimpa 476 . . . . 5 ((𝐼𝑉𝑥𝑊) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
19 frgpmhm.r . . . . . 6 = ( ~FG𝐼)
20 eqid 2730 . . . . . 6 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
21 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
227, 19, 20, 21frgpeccl 19698 . . . . 5 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → [𝑥] ∈ (Base‘𝐺))
2318, 22syl 17 . . . 4 ((𝐼𝑉𝑥𝑊) → [𝑥] ∈ (Base‘𝐺))
24 frgpmhm.f . . . 4 𝐹 = (𝑥𝑊 ↦ [𝑥] )
2523, 24fmptd 7089 . . 3 (𝐼𝑉𝐹:𝑊⟶(Base‘𝐺))
2620, 19efger 19655 . . . . . . . 8 Er ( I ‘Word (𝐼 × 2o))
27 ereq2 8682 . . . . . . . . 9 (𝑊 = ( I ‘Word (𝐼 × 2o)) → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2816, 27syl 17 . . . . . . . 8 (𝐼𝑉 → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2926, 28mpbiri 258 . . . . . . 7 (𝐼𝑉 Er 𝑊)
3029adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → Er 𝑊)
3110fvexi 6875 . . . . . . 7 𝑊 ∈ V
3231a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → 𝑊 ∈ V)
3330, 32, 24divsfval 17517 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎 ++ 𝑏)) = [(𝑎 ++ 𝑏)] )
34 eqid 2730 . . . . . . . 8 (+g𝑀) = (+g𝑀)
354, 10, 34frmdadd 18789 . . . . . . 7 ((𝑎𝑊𝑏𝑊) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3635adantl 481 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3736fveq2d 6865 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = (𝐹‘(𝑎 ++ 𝑏)))
3830, 32, 24divsfval 17517 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑎) = [𝑎] )
3930, 32, 24divsfval 17517 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑏) = [𝑏] )
4038, 39oveq12d 7408 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ([𝑎] (+g𝐺)[𝑏] ))
4116eleq2d 2815 . . . . . . . . 9 (𝐼𝑉 → (𝑎𝑊𝑎 ∈ ( I ‘Word (𝐼 × 2o))))
4216eleq2d 2815 . . . . . . . . 9 (𝐼𝑉 → (𝑏𝑊𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
4341, 42anbi12d 632 . . . . . . . 8 (𝐼𝑉 → ((𝑎𝑊𝑏𝑊) ↔ (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o)))))
4443biimpa 476 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
45 eqid 2730 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4620, 7, 19, 45frgpadd 19700 . . . . . . 7 ((𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4744, 46syl 17 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4840, 47eqtrd 2765 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = [(𝑎 ++ 𝑏)] )
4933, 37, 483eqtr4d 2775 . . . 4 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5049ralrimivva 3181 . . 3 (𝐼𝑉 → ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5131a1i 11 . . . . 5 (𝐼𝑉𝑊 ∈ V)
5229, 51, 24divsfval 17517 . . . 4 (𝐼𝑉 → (𝐹‘∅) = [∅] )
537, 19frgp0 19697 . . . . 5 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
5453simprd 495 . . . 4 (𝐼𝑉 → [∅] = (0g𝐺))
5552, 54eqtrd 2765 . . 3 (𝐼𝑉 → (𝐹‘∅) = (0g𝐺))
5625, 50, 553jca 1128 . 2 (𝐼𝑉 → (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺)))
574frmd0 18794 . . 3 ∅ = (0g𝑀)
58 eqid 2730 . . 3 (0g𝐺) = (0g𝐺)
5910, 21, 34, 45, 57, 58ismhm 18719 . 2 (𝐹 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺))))
606, 9, 56, 59syl21anbrc 1345 1 (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  c0 4299  cmpt 5191   I cid 5535   × cxp 5639  Oncon0 6335  wf 6510  cfv 6514  (class class class)co 7390  2oc2o 8431   Er wer 8671  [cec 8672  Word cword 14485   ++ cconcat 14542  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668   MndHom cmhm 18715  freeMndcfrmd 18781  Grpcgrp 18872   ~FG cefg 19643  freeGrpcfrgp 19644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-frmd 18783  df-grp 18875  df-efg 19646  df-frgp 19647
This theorem is referenced by:  frgpup3lem  19714
  Copyright terms: Public domain W3C validator