MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Structured version   Visualization version   GIF version

Theorem frgpmhm 19109
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpmhm.w 𝑊 = (Base‘𝑀)
frgpmhm.g 𝐺 = (freeGrp‘𝐼)
frgpmhm.r = ( ~FG𝐼)
frgpmhm.f 𝐹 = (𝑥𝑊 ↦ [𝑥] )
Assertion
Ref Expression
frgpmhm (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊   𝑥,
Allowed substitution hints:   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem frgpmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 8188 . . . 4 2o ∈ On
2 xpexg 7513 . . . 4 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
31, 2mpan2 691 . . 3 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
4 frgpmhm.m . . . 4 𝑀 = (freeMnd‘(𝐼 × 2o))
54frmdmnd 18240 . . 3 ((𝐼 × 2o) ∈ V → 𝑀 ∈ Mnd)
63, 5syl 17 . 2 (𝐼𝑉𝑀 ∈ Mnd)
7 frgpmhm.g . . . 4 𝐺 = (freeGrp‘𝐼)
87frgpgrp 19106 . . 3 (𝐼𝑉𝐺 ∈ Grp)
98grpmndd 18331 . 2 (𝐼𝑉𝐺 ∈ Mnd)
10 frgpmhm.w . . . . . . . . . 10 𝑊 = (Base‘𝑀)
114, 10frmdbas 18233 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → 𝑊 = Word (𝐼 × 2o))
12 wrdexg 14044 . . . . . . . . . 10 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
13 fvi 6765 . . . . . . . . . 10 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1412, 13syl 17 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1511, 14eqtr4d 2774 . . . . . . . 8 ((𝐼 × 2o) ∈ V → 𝑊 = ( I ‘Word (𝐼 × 2o)))
163, 15syl 17 . . . . . . 7 (𝐼𝑉𝑊 = ( I ‘Word (𝐼 × 2o)))
1716eleq2d 2816 . . . . . 6 (𝐼𝑉 → (𝑥𝑊𝑥 ∈ ( I ‘Word (𝐼 × 2o))))
1817biimpa 480 . . . . 5 ((𝐼𝑉𝑥𝑊) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
19 frgpmhm.r . . . . . 6 = ( ~FG𝐼)
20 eqid 2736 . . . . . 6 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
21 eqid 2736 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
227, 19, 20, 21frgpeccl 19105 . . . . 5 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → [𝑥] ∈ (Base‘𝐺))
2318, 22syl 17 . . . 4 ((𝐼𝑉𝑥𝑊) → [𝑥] ∈ (Base‘𝐺))
24 frgpmhm.f . . . 4 𝐹 = (𝑥𝑊 ↦ [𝑥] )
2523, 24fmptd 6909 . . 3 (𝐼𝑉𝐹:𝑊⟶(Base‘𝐺))
2620, 19efger 19062 . . . . . . . 8 Er ( I ‘Word (𝐼 × 2o))
27 ereq2 8377 . . . . . . . . 9 (𝑊 = ( I ‘Word (𝐼 × 2o)) → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2816, 27syl 17 . . . . . . . 8 (𝐼𝑉 → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2926, 28mpbiri 261 . . . . . . 7 (𝐼𝑉 Er 𝑊)
3029adantr 484 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → Er 𝑊)
3110fvexi 6709 . . . . . . 7 𝑊 ∈ V
3231a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → 𝑊 ∈ V)
3330, 32, 24divsfval 17006 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎 ++ 𝑏)) = [(𝑎 ++ 𝑏)] )
34 eqid 2736 . . . . . . . 8 (+g𝑀) = (+g𝑀)
354, 10, 34frmdadd 18236 . . . . . . 7 ((𝑎𝑊𝑏𝑊) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3635adantl 485 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3736fveq2d 6699 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = (𝐹‘(𝑎 ++ 𝑏)))
3830, 32, 24divsfval 17006 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑎) = [𝑎] )
3930, 32, 24divsfval 17006 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑏) = [𝑏] )
4038, 39oveq12d 7209 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ([𝑎] (+g𝐺)[𝑏] ))
4116eleq2d 2816 . . . . . . . . 9 (𝐼𝑉 → (𝑎𝑊𝑎 ∈ ( I ‘Word (𝐼 × 2o))))
4216eleq2d 2816 . . . . . . . . 9 (𝐼𝑉 → (𝑏𝑊𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
4341, 42anbi12d 634 . . . . . . . 8 (𝐼𝑉 → ((𝑎𝑊𝑏𝑊) ↔ (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o)))))
4443biimpa 480 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
45 eqid 2736 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4620, 7, 19, 45frgpadd 19107 . . . . . . 7 ((𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4744, 46syl 17 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4840, 47eqtrd 2771 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = [(𝑎 ++ 𝑏)] )
4933, 37, 483eqtr4d 2781 . . . 4 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5049ralrimivva 3102 . . 3 (𝐼𝑉 → ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5131a1i 11 . . . . 5 (𝐼𝑉𝑊 ∈ V)
5229, 51, 24divsfval 17006 . . . 4 (𝐼𝑉 → (𝐹‘∅) = [∅] )
537, 19frgp0 19104 . . . . 5 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
5453simprd 499 . . . 4 (𝐼𝑉 → [∅] = (0g𝐺))
5552, 54eqtrd 2771 . . 3 (𝐼𝑉 → (𝐹‘∅) = (0g𝐺))
5625, 50, 553jca 1130 . 2 (𝐼𝑉 → (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺)))
574frmd0 18241 . . 3 ∅ = (0g𝑀)
58 eqid 2736 . . 3 (0g𝐺) = (0g𝐺)
5910, 21, 34, 45, 57, 58ismhm 18174 . 2 (𝐹 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺))))
606, 9, 56, 59syl21anbrc 1346 1 (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  c0 4223  cmpt 5120   I cid 5439   × cxp 5534  Oncon0 6191  wf 6354  cfv 6358  (class class class)co 7191  2oc2o 8174   Er wer 8366  [cec 8367  Word cword 14034   ++ cconcat 14090  Basecbs 16666  +gcplusg 16749  0gc0g 16898  Mndcmnd 18127   MndHom cmhm 18170  freeMndcfrmd 18228  Grpcgrp 18319   ~FG cefg 19050  freeGrpcfrgp 19051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-lsw 14083  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-splice 14280  df-reverse 14289  df-s2 14378  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-0g 16900  df-imas 16967  df-qus 16968  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-frmd 18230  df-grp 18322  df-efg 19053  df-frgp 19054
This theorem is referenced by:  frgpup3lem  19121
  Copyright terms: Public domain W3C validator