MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Structured version   Visualization version   GIF version

Theorem frgpmhm 19644
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m 𝑀 = (freeMnd‘(𝐼 × 2o))
frgpmhm.w 𝑊 = (Base‘𝑀)
frgpmhm.g 𝐺 = (freeGrp‘𝐼)
frgpmhm.r = ( ~FG𝐼)
frgpmhm.f 𝐹 = (𝑥𝑊 ↦ [𝑥] )
Assertion
Ref Expression
frgpmhm (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊   𝑥,
Allowed substitution hints:   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem frgpmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 8401 . . . 4 2o ∈ On
2 xpexg 7686 . . . 4 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
31, 2mpan2 691 . . 3 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
4 frgpmhm.m . . . 4 𝑀 = (freeMnd‘(𝐼 × 2o))
54frmdmnd 18733 . . 3 ((𝐼 × 2o) ∈ V → 𝑀 ∈ Mnd)
63, 5syl 17 . 2 (𝐼𝑉𝑀 ∈ Mnd)
7 frgpmhm.g . . . 4 𝐺 = (freeGrp‘𝐼)
87frgpgrp 19641 . . 3 (𝐼𝑉𝐺 ∈ Grp)
98grpmndd 18825 . 2 (𝐼𝑉𝐺 ∈ Mnd)
10 frgpmhm.w . . . . . . . . . 10 𝑊 = (Base‘𝑀)
114, 10frmdbas 18726 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → 𝑊 = Word (𝐼 × 2o))
12 wrdexg 14431 . . . . . . . . . 10 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
13 fvi 6899 . . . . . . . . . 10 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1412, 13syl 17 . . . . . . . . 9 ((𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
1511, 14eqtr4d 2767 . . . . . . . 8 ((𝐼 × 2o) ∈ V → 𝑊 = ( I ‘Word (𝐼 × 2o)))
163, 15syl 17 . . . . . . 7 (𝐼𝑉𝑊 = ( I ‘Word (𝐼 × 2o)))
1716eleq2d 2814 . . . . . 6 (𝐼𝑉 → (𝑥𝑊𝑥 ∈ ( I ‘Word (𝐼 × 2o))))
1817biimpa 476 . . . . 5 ((𝐼𝑉𝑥𝑊) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
19 frgpmhm.r . . . . . 6 = ( ~FG𝐼)
20 eqid 2729 . . . . . 6 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
21 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
227, 19, 20, 21frgpeccl 19640 . . . . 5 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → [𝑥] ∈ (Base‘𝐺))
2318, 22syl 17 . . . 4 ((𝐼𝑉𝑥𝑊) → [𝑥] ∈ (Base‘𝐺))
24 frgpmhm.f . . . 4 𝐹 = (𝑥𝑊 ↦ [𝑥] )
2523, 24fmptd 7048 . . 3 (𝐼𝑉𝐹:𝑊⟶(Base‘𝐺))
2620, 19efger 19597 . . . . . . . 8 Er ( I ‘Word (𝐼 × 2o))
27 ereq2 8633 . . . . . . . . 9 (𝑊 = ( I ‘Word (𝐼 × 2o)) → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2816, 27syl 17 . . . . . . . 8 (𝐼𝑉 → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2o))))
2926, 28mpbiri 258 . . . . . . 7 (𝐼𝑉 Er 𝑊)
3029adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → Er 𝑊)
3110fvexi 6836 . . . . . . 7 𝑊 ∈ V
3231a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → 𝑊 ∈ V)
3330, 32, 24divsfval 17451 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎 ++ 𝑏)) = [(𝑎 ++ 𝑏)] )
34 eqid 2729 . . . . . . . 8 (+g𝑀) = (+g𝑀)
354, 10, 34frmdadd 18729 . . . . . . 7 ((𝑎𝑊𝑏𝑊) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3635adantl 481 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3736fveq2d 6826 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = (𝐹‘(𝑎 ++ 𝑏)))
3830, 32, 24divsfval 17451 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑎) = [𝑎] )
3930, 32, 24divsfval 17451 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑏) = [𝑏] )
4038, 39oveq12d 7367 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ([𝑎] (+g𝐺)[𝑏] ))
4116eleq2d 2814 . . . . . . . . 9 (𝐼𝑉 → (𝑎𝑊𝑎 ∈ ( I ‘Word (𝐼 × 2o))))
4216eleq2d 2814 . . . . . . . . 9 (𝐼𝑉 → (𝑏𝑊𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
4341, 42anbi12d 632 . . . . . . . 8 (𝐼𝑉 → ((𝑎𝑊𝑏𝑊) ↔ (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o)))))
4443biimpa 476 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))))
45 eqid 2729 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4620, 7, 19, 45frgpadd 19642 . . . . . . 7 ((𝑎 ∈ ( I ‘Word (𝐼 × 2o)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2o))) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4744, 46syl 17 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
4840, 47eqtrd 2764 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = [(𝑎 ++ 𝑏)] )
4933, 37, 483eqtr4d 2774 . . . 4 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5049ralrimivva 3172 . . 3 (𝐼𝑉 → ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5131a1i 11 . . . . 5 (𝐼𝑉𝑊 ∈ V)
5229, 51, 24divsfval 17451 . . . 4 (𝐼𝑉 → (𝐹‘∅) = [∅] )
537, 19frgp0 19639 . . . . 5 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
5453simprd 495 . . . 4 (𝐼𝑉 → [∅] = (0g𝐺))
5552, 54eqtrd 2764 . . 3 (𝐼𝑉 → (𝐹‘∅) = (0g𝐺))
5625, 50, 553jca 1128 . 2 (𝐼𝑉 → (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺)))
574frmd0 18734 . . 3 ∅ = (0g𝑀)
58 eqid 2729 . . 3 (0g𝐺) = (0g𝐺)
5910, 21, 34, 45, 57, 58ismhm 18659 . 2 (𝐹 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺))))
606, 9, 56, 59syl21anbrc 1345 1 (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  c0 4284  cmpt 5173   I cid 5513   × cxp 5617  Oncon0 6307  wf 6478  cfv 6482  (class class class)co 7349  2oc2o 8382   Er wer 8622  [cec 8623  Word cword 14420   ++ cconcat 14477  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608   MndHom cmhm 18655  freeMndcfrmd 18721  Grpcgrp 18812   ~FG cefg 19585  freeGrpcfrgp 19586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-splice 14656  df-reverse 14665  df-s2 14755  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-frmd 18723  df-grp 18815  df-efg 19588  df-frgp 19589
This theorem is referenced by:  frgpup3lem  19656
  Copyright terms: Public domain W3C validator