| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iserd | Structured version Visualization version GIF version | ||
| Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| iserd.1 | ⊢ (𝜑 → Rel 𝑅) |
| iserd.2 | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) |
| iserd.3 | ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) |
| iserd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) |
| Ref | Expression |
|---|---|
| iserd | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserd.1 | . . 3 ⊢ (𝜑 → Rel 𝑅) | |
| 2 | eqidd 2731 | . . 3 ⊢ (𝜑 → dom 𝑅 = dom 𝑅) | |
| 3 | iserd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) | |
| 4 | 3 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
| 5 | iserd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) | |
| 6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝜑 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 7 | 4, 6 | jca 511 | . . . . . 6 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| 8 | 7 | alrimiv 1928 | . . . . 5 ⊢ (𝜑 → ∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| 9 | 8 | alrimiv 1928 | . . . 4 ⊢ (𝜑 → ∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| 10 | 9 | alrimiv 1928 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| 11 | dfer2 8618 | . . 3 ⊢ (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | |
| 12 | 1, 2, 10, 11 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝑅 Er dom 𝑅) |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅) |
| 14 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅) | |
| 15 | 13, 14 | erref 8637 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 → 𝑥𝑅𝑥)) |
| 17 | vex 3438 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 18 | 17, 17 | breldm 5846 | . . . . . 6 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ dom 𝑅) |
| 19 | 16, 18 | impbid1 225 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥𝑅𝑥)) |
| 20 | iserd.4 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) | |
| 21 | 19, 20 | bitr4d 282 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴)) |
| 22 | 21 | eqrdv 2728 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
| 23 | ereq2 8625 | . . 3 ⊢ (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) | |
| 24 | 22, 23 | syl 17 | . 2 ⊢ (𝜑 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) |
| 25 | 12, 24 | mpbid 232 | 1 ⊢ (𝜑 → 𝑅 Er 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 dom cdm 5614 Rel wrel 5619 Er wer 8614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-er 8617 |
| This theorem is referenced by: iseri 8644 iseriALT 8645 swoer 8648 iiner 8708 erinxp 8710 cicer 17705 eqger 19083 gaorber 19213 efgrelexlemb 19655 efgcpbllemb 19660 xmeter 24341 ercgrg 28488 erler 33222 metider 33897 prjsper 42620 cicerALT 49057 |
| Copyright terms: Public domain | W3C validator |