| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iserd | Structured version Visualization version GIF version | ||
| Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| iserd.1 | ⊢ (𝜑 → Rel 𝑅) |
| iserd.2 | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) |
| iserd.3 | ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) |
| iserd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) |
| Ref | Expression |
|---|---|
| iserd | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserd.1 | . . 3 ⊢ (𝜑 → Rel 𝑅) | |
| 2 | eqidd 2734 | . . 3 ⊢ (𝜑 → dom 𝑅 = dom 𝑅) | |
| 3 | iserd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) | |
| 4 | 3 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
| 5 | iserd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) | |
| 6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝜑 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 7 | 4, 6 | jca 511 | . . . . . 6 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| 8 | 7 | alrimiv 1928 | . . . . 5 ⊢ (𝜑 → ∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| 9 | 8 | alrimiv 1928 | . . . 4 ⊢ (𝜑 → ∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| 10 | 9 | alrimiv 1928 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
| 11 | dfer2 8632 | . . 3 ⊢ (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | |
| 12 | 1, 2, 10, 11 | syl3anbrc 1344 | . 2 ⊢ (𝜑 → 𝑅 Er dom 𝑅) |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅) |
| 14 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅) | |
| 15 | 13, 14 | erref 8651 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 → 𝑥𝑅𝑥)) |
| 17 | vex 3442 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 18 | 17, 17 | breldm 5855 | . . . . . 6 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ dom 𝑅) |
| 19 | 16, 18 | impbid1 225 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥𝑅𝑥)) |
| 20 | iserd.4 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) | |
| 21 | 19, 20 | bitr4d 282 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴)) |
| 22 | 21 | eqrdv 2731 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
| 23 | ereq2 8639 | . . 3 ⊢ (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) | |
| 24 | 22, 23 | syl 17 | . 2 ⊢ (𝜑 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) |
| 25 | 12, 24 | mpbid 232 | 1 ⊢ (𝜑 → 𝑅 Er 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 dom cdm 5621 Rel wrel 5626 Er wer 8628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-er 8631 |
| This theorem is referenced by: iseri 8658 iseriALT 8659 swoer 8662 iiner 8722 erinxp 8724 cicer 17723 eqger 19100 gaorber 19230 efgrelexlemb 19672 efgcpbllemb 19677 xmeter 24358 ercgrg 28505 erler 33243 metider 33918 prjsper 42716 cicerALT 49161 |
| Copyright terms: Public domain | W3C validator |