![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iserd | Structured version Visualization version GIF version |
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
iserd.1 | ⊢ (𝜑 → Rel 𝑅) |
iserd.2 | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) |
iserd.3 | ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) |
iserd.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) |
Ref | Expression |
---|---|
iserd | ⊢ (𝜑 → 𝑅 Er 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserd.1 | . . 3 ⊢ (𝜑 → Rel 𝑅) | |
2 | eqidd 2826 | . . 3 ⊢ (𝜑 → dom 𝑅 = dom 𝑅) | |
3 | iserd.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) | |
4 | 3 | ex 403 | . . . . . . 7 ⊢ (𝜑 → (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
5 | iserd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) | |
6 | 5 | ex 403 | . . . . . . 7 ⊢ (𝜑 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
7 | 4, 6 | jca 507 | . . . . . 6 ⊢ (𝜑 → ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
8 | 7 | alrimiv 2026 | . . . . 5 ⊢ (𝜑 → ∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
9 | 8 | alrimiv 2026 | . . . 4 ⊢ (𝜑 → ∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
10 | 9 | alrimiv 2026 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
11 | dfer2 8015 | . . 3 ⊢ (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | |
12 | 1, 2, 10, 11 | syl3anbrc 1447 | . 2 ⊢ (𝜑 → 𝑅 Er dom 𝑅) |
13 | 12 | adantr 474 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅) |
14 | simpr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅) | |
15 | 13, 14 | erref 8034 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥) |
16 | 15 | ex 403 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 → 𝑥𝑅𝑥)) |
17 | vex 3417 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
18 | 17, 17 | breldm 5565 | . . . . . 6 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ dom 𝑅) |
19 | 16, 18 | impbid1 217 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥𝑅𝑥)) |
20 | iserd.4 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) | |
21 | 19, 20 | bitr4d 274 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ 𝐴)) |
22 | 21 | eqrdv 2823 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
23 | ereq2 8022 | . . 3 ⊢ (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (𝜑 → (𝑅 Er dom 𝑅 ↔ 𝑅 Er 𝐴)) |
25 | 12, 24 | mpbid 224 | 1 ⊢ (𝜑 → 𝑅 Er 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∀wal 1654 = wceq 1656 ∈ wcel 2164 class class class wbr 4875 dom cdm 5346 Rel wrel 5351 Er wer 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-er 8014 |
This theorem is referenced by: iseri 8041 iseriALT 8042 swoer 8044 iiner 8089 erinxp 8091 cicer 16825 eqger 18002 gaorber 18098 efgrelexlemb 18523 efgcpbllemb 18528 hmpher 21965 xmeter 22615 ercgrg 25836 metider 30478 |
Copyright terms: Public domain | W3C validator |