MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserd Structured version   Visualization version   GIF version

Theorem iserd 8314
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1 (𝜑 → Rel 𝑅)
iserd.2 ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)
iserd.3 ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
iserd.4 (𝜑 → (𝑥𝐴𝑥𝑅𝑥))
Assertion
Ref Expression
iserd (𝜑𝑅 Er 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3 (𝜑 → Rel 𝑅)
2 eqidd 2822 . . 3 (𝜑 → dom 𝑅 = dom 𝑅)
3 iserd.2 . . . . . . . 8 ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)
43ex 415 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦𝑦𝑅𝑥))
5 iserd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)
65ex 415 . . . . . . 7 (𝜑 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
74, 6jca 514 . . . . . 6 (𝜑 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
87alrimiv 1924 . . . . 5 (𝜑 → ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
98alrimiv 1924 . . . 4 (𝜑 → ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
109alrimiv 1924 . . 3 (𝜑 → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
11 dfer2 8289 . . 3 (𝑅 Er dom 𝑅 ↔ (Rel 𝑅 ∧ dom 𝑅 = dom 𝑅 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
121, 2, 10, 11syl3anbrc 1339 . 2 (𝜑𝑅 Er dom 𝑅)
1312adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝑅) → 𝑅 Er dom 𝑅)
14 simpr 487 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝑅) → 𝑥 ∈ dom 𝑅)
1513, 14erref 8308 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
1615ex 415 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝑅𝑥))
17 vex 3497 . . . . . . 7 𝑥 ∈ V
1817, 17breldm 5776 . . . . . 6 (𝑥𝑅𝑥𝑥 ∈ dom 𝑅)
1916, 18impbid1 227 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝑅𝑥))
20 iserd.4 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝑅𝑥))
2119, 20bitr4d 284 . . . 4 (𝜑 → (𝑥 ∈ dom 𝑅𝑥𝐴))
2221eqrdv 2819 . . 3 (𝜑 → dom 𝑅 = 𝐴)
23 ereq2 8296 . . 3 (dom 𝑅 = 𝐴 → (𝑅 Er dom 𝑅𝑅 Er 𝐴))
2422, 23syl 17 . 2 (𝜑 → (𝑅 Er dom 𝑅𝑅 Er 𝐴))
2512, 24mpbid 234 1 (𝜑𝑅 Er 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wcel 2110   class class class wbr 5065  dom cdm 5554  Rel wrel 5559   Er wer 8285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-br 5066  df-opab 5128  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-er 8288
This theorem is referenced by:  iseri  8315  iseriALT  8316  swoer  8318  iiner  8368  erinxp  8370  cicer  17075  eqger  18329  gaorber  18437  efgrelexlemb  18875  efgcpbllemb  18880  xmeter  23042  ercgrg  26302  metider  31134  prjsper  39256
  Copyright terms: Public domain W3C validator