MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgp0 Structured version   Visualization version   GIF version

Theorem frgp0 19793
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
Assertion
Ref Expression
frgp0 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))

Proof of Theorem frgp0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 𝑧 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgp0.m . . 3 𝐺 = (freeGrp‘𝐼)
2 eqid 2735 . . 3 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
3 frgp0.r . . 3 = ( ~FG𝐼)
41, 2, 3frgpval 19791 . 2 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
5 2on 8519 . . . . 5 2o ∈ On
6 xpexg 7769 . . . . 5 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
75, 6mpan2 691 . . . 4 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
8 eqid 2735 . . . . 5 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
92, 8frmdbas 18878 . . . 4 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
107, 9syl 17 . . 3 (𝐼𝑉 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1110eqcomd 2741 . 2 (𝐼𝑉 → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
12 eqidd 2736 . 2 (𝐼𝑉 → (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o))))
13 eqid 2735 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
1413, 3efger 19751 . . 3 Er ( I ‘Word (𝐼 × 2o))
15 wrdexg 14559 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
16 fvi 6985 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
177, 15, 163syl 18 . . . 4 (𝐼𝑉 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
18 ereq2 8752 . . . 4 (( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o) → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
1917, 18syl 17 . . 3 (𝐼𝑉 → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
2014, 19mpbii 233 . 2 (𝐼𝑉 Er Word (𝐼 × 2o))
21 fvexd 6922 . 2 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ V)
22 eqid 2735 . . . 4 (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o)))
231, 2, 3, 22frgpcpbl 19792 . . 3 ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑))
2423a1i 11 . 2 (𝐼𝑉 → ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑)))
252frmdmnd 18885 . . . . . 6 ((𝐼 × 2o) ∈ V → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
267, 25syl 17 . . . . 5 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
27263ad2ant1 1132 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
28 simp2 1136 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
29113ad2ant1 1132 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
3028, 29eleqtrd 2841 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
31 simp3 1137 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ Word (𝐼 × 2o))
3231, 29eleqtrd 2841 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
338, 22mndcl 18768 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3427, 30, 32, 33syl3anc 1370 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3534, 29eleqtrrd 2842 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ Word (𝐼 × 2o))
3620adantr 480 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Er Word (𝐼 × 2o))
3726adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
38343adant3r3 1183 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
39 simpr3 1195 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ Word (𝐼 × 2o))
4011adantr 480 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
4139, 40eleqtrd 2841 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
428, 22mndcl 18768 . . . . . 6 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4337, 38, 41, 42syl3anc 1370 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4443, 40eleqtrrd 2842 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ Word (𝐼 × 2o))
4536, 44erref 8764 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧))
46303adant3r3 1183 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
47323adant3r3 1183 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
488, 22mndass 18769 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
4937, 46, 47, 41, 48syl13anc 1371 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
5045, 49breqtrd 5174 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
51 wrd0 14574 . . 3 ∅ ∈ Word (𝐼 × 2o)
5251a1i 11 . 2 (𝐼𝑉 → ∅ ∈ Word (𝐼 × 2o))
5351, 11eleqtrid 2845 . . . . . 6 (𝐼𝑉 → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5453adantr 480 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5511eleq2d 2825 . . . . . 6 (𝐼𝑉 → (𝑥 ∈ Word (𝐼 × 2o) ↔ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))))
5655biimpa 476 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
572, 8, 22frmdadd 18881 . . . . 5 ((∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
5854, 56, 57syl2anc 584 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
59 ccatlid 14621 . . . . 5 (𝑥 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑥) = 𝑥)
6059adantl 481 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅ ++ 𝑥) = 𝑥)
6158, 60eqtrd 2775 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = 𝑥)
6220adantr 480 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Er Word (𝐼 × 2o))
63 simpr 484 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
6462, 63erref 8764 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 𝑥)
6561, 64eqbrtrd 5170 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) 𝑥)
66 revcl 14796 . . . 4 (𝑥 ∈ Word (𝐼 × 2o) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
6766adantl 481 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
68 eqid 2735 . . . . 5 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6968efgmf 19746 . . . 4 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
7069a1i 11 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o))
71 wrdco 14867 . . 3 (((reverse‘𝑥) ∈ Word (𝐼 × 2o) ∧ (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7267, 70, 71syl2anc 584 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7311adantr 480 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
7472, 73eleqtrd 2841 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
752, 8, 22frmdadd 18881 . . . 4 ((((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7674, 56, 75syl2anc 584 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7717eleq2d 2825 . . . . 5 (𝐼𝑉 → (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) ↔ 𝑥 ∈ Word (𝐼 × 2o)))
7877biimpar 477 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
79 eqid 2735 . . . . 5 (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))
8013, 3, 68, 79efginvrel1 19761 . . . 4 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8178, 80syl 17 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8276, 81eqbrtrd 5170 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) ∅)
834, 11, 12, 20, 21, 24, 35, 50, 52, 65, 72, 82qusgrp2 19089 1 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  c0 4339  cop 4637  cotp 4639   class class class wbr 5148  cmpt 5231   I cid 5582   × cxp 5687  ccom 5693  Oncon0 6386  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  1oc1o 8498  2oc2o 8499   Er wer 8741  [cec 8742  0cc0 11153  ...cfz 13544  chash 14366  Word cword 14549   ++ cconcat 14605   splice csplice 14784  reversecreverse 14793  ⟨“cs2 14877  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760  freeMndcfrmd 18873  Grpcgrp 18964   ~FG cefg 19739  freeGrpcfrgp 19740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-splice 14785  df-reverse 14794  df-s2 14884  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-frmd 18875  df-grp 18967  df-efg 19742  df-frgp 19743
This theorem is referenced by:  frgpgrp  19795  frgpinv  19797  frgpmhm  19798
  Copyright terms: Public domain W3C validator