MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgp0 Structured version   Visualization version   GIF version

Theorem frgp0 19366
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
Assertion
Ref Expression
frgp0 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))

Proof of Theorem frgp0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 𝑧 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgp0.m . . 3 𝐺 = (freeGrp‘𝐼)
2 eqid 2738 . . 3 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
3 frgp0.r . . 3 = ( ~FG𝐼)
41, 2, 3frgpval 19364 . 2 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
5 2on 8311 . . . . 5 2o ∈ On
6 xpexg 7600 . . . . 5 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
75, 6mpan2 688 . . . 4 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
8 eqid 2738 . . . . 5 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
92, 8frmdbas 18491 . . . 4 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
107, 9syl 17 . . 3 (𝐼𝑉 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1110eqcomd 2744 . 2 (𝐼𝑉 → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
12 eqidd 2739 . 2 (𝐼𝑉 → (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o))))
13 eqid 2738 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
1413, 3efger 19324 . . 3 Er ( I ‘Word (𝐼 × 2o))
15 wrdexg 14227 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
16 fvi 6844 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
177, 15, 163syl 18 . . . 4 (𝐼𝑉 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
18 ereq2 8506 . . . 4 (( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o) → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
1917, 18syl 17 . . 3 (𝐼𝑉 → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
2014, 19mpbii 232 . 2 (𝐼𝑉 Er Word (𝐼 × 2o))
21 fvexd 6789 . 2 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ V)
22 eqid 2738 . . . 4 (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o)))
231, 2, 3, 22frgpcpbl 19365 . . 3 ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑))
2423a1i 11 . 2 (𝐼𝑉 → ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑)))
252frmdmnd 18498 . . . . . 6 ((𝐼 × 2o) ∈ V → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
267, 25syl 17 . . . . 5 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
27263ad2ant1 1132 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
28 simp2 1136 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
29113ad2ant1 1132 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
3028, 29eleqtrd 2841 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
31 simp3 1137 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ Word (𝐼 × 2o))
3231, 29eleqtrd 2841 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
338, 22mndcl 18393 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3427, 30, 32, 33syl3anc 1370 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3534, 29eleqtrrd 2842 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ Word (𝐼 × 2o))
3620adantr 481 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Er Word (𝐼 × 2o))
3726adantr 481 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
38343adant3r3 1183 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
39 simpr3 1195 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ Word (𝐼 × 2o))
4011adantr 481 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
4139, 40eleqtrd 2841 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
428, 22mndcl 18393 . . . . . 6 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4337, 38, 41, 42syl3anc 1370 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4443, 40eleqtrrd 2842 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ Word (𝐼 × 2o))
4536, 44erref 8518 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧))
46303adant3r3 1183 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
47323adant3r3 1183 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
488, 22mndass 18394 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
4937, 46, 47, 41, 48syl13anc 1371 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
5045, 49breqtrd 5100 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
51 wrd0 14242 . . 3 ∅ ∈ Word (𝐼 × 2o)
5251a1i 11 . 2 (𝐼𝑉 → ∅ ∈ Word (𝐼 × 2o))
5351, 11eleqtrid 2845 . . . . . 6 (𝐼𝑉 → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5453adantr 481 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5511eleq2d 2824 . . . . . 6 (𝐼𝑉 → (𝑥 ∈ Word (𝐼 × 2o) ↔ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))))
5655biimpa 477 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
572, 8, 22frmdadd 18494 . . . . 5 ((∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
5854, 56, 57syl2anc 584 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
59 ccatlid 14291 . . . . 5 (𝑥 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑥) = 𝑥)
6059adantl 482 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅ ++ 𝑥) = 𝑥)
6158, 60eqtrd 2778 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = 𝑥)
6220adantr 481 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Er Word (𝐼 × 2o))
63 simpr 485 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
6462, 63erref 8518 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 𝑥)
6561, 64eqbrtrd 5096 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) 𝑥)
66 revcl 14474 . . . 4 (𝑥 ∈ Word (𝐼 × 2o) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
6766adantl 482 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
68 eqid 2738 . . . . 5 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6968efgmf 19319 . . . 4 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
7069a1i 11 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o))
71 wrdco 14544 . . 3 (((reverse‘𝑥) ∈ Word (𝐼 × 2o) ∧ (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7267, 70, 71syl2anc 584 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7311adantr 481 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
7472, 73eleqtrd 2841 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
752, 8, 22frmdadd 18494 . . . 4 ((((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7674, 56, 75syl2anc 584 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7717eleq2d 2824 . . . . 5 (𝐼𝑉 → (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) ↔ 𝑥 ∈ Word (𝐼 × 2o)))
7877biimpar 478 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
79 eqid 2738 . . . . 5 (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))
8013, 3, 68, 79efginvrel1 19334 . . . 4 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8178, 80syl 17 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8276, 81eqbrtrd 5096 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) ∅)
834, 11, 12, 20, 21, 24, 35, 50, 52, 65, 72, 82qusgrp2 18693 1 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  c0 4256  cop 4567  cotp 4569   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  ccom 5593  Oncon0 6266  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291   Er wer 8495  [cec 8496  0cc0 10871  ...cfz 13239  chash 14044  Word cword 14217   ++ cconcat 14273   splice csplice 14462  reversecreverse 14471  ⟨“cs2 14554  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  freeMndcfrmd 18486  Grpcgrp 18577   ~FG cefg 19312  freeGrpcfrgp 19313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-frmd 18488  df-grp 18580  df-efg 19315  df-frgp 19316
This theorem is referenced by:  frgpgrp  19368  frgpinv  19370  frgpmhm  19371
  Copyright terms: Public domain W3C validator