MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgp0 Structured version   Visualization version   GIF version

Theorem frgp0 18953
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
Assertion
Ref Expression
frgp0 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))

Proof of Theorem frgp0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 𝑧 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgp0.m . . 3 𝐺 = (freeGrp‘𝐼)
2 eqid 2758 . . 3 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
3 frgp0.r . . 3 = ( ~FG𝐼)
41, 2, 3frgpval 18951 . 2 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
5 2on 8121 . . . . 5 2o ∈ On
6 xpexg 7471 . . . . 5 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
75, 6mpan2 690 . . . 4 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
8 eqid 2758 . . . . 5 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
92, 8frmdbas 18083 . . . 4 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
107, 9syl 17 . . 3 (𝐼𝑉 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1110eqcomd 2764 . 2 (𝐼𝑉 → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
12 eqidd 2759 . 2 (𝐼𝑉 → (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o))))
13 eqid 2758 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
1413, 3efger 18911 . . 3 Er ( I ‘Word (𝐼 × 2o))
15 wrdexg 13923 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
16 fvi 6728 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
177, 15, 163syl 18 . . . 4 (𝐼𝑉 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
18 ereq2 8307 . . . 4 (( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o) → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
1917, 18syl 17 . . 3 (𝐼𝑉 → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
2014, 19mpbii 236 . 2 (𝐼𝑉 Er Word (𝐼 × 2o))
21 fvexd 6673 . 2 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ V)
22 eqid 2758 . . . 4 (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o)))
231, 2, 3, 22frgpcpbl 18952 . . 3 ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑))
2423a1i 11 . 2 (𝐼𝑉 → ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑)))
252frmdmnd 18090 . . . . . 6 ((𝐼 × 2o) ∈ V → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
267, 25syl 17 . . . . 5 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
27263ad2ant1 1130 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
28 simp2 1134 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
29113ad2ant1 1130 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
3028, 29eleqtrd 2854 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
31 simp3 1135 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ Word (𝐼 × 2o))
3231, 29eleqtrd 2854 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
338, 22mndcl 17985 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3427, 30, 32, 33syl3anc 1368 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3534, 29eleqtrrd 2855 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ Word (𝐼 × 2o))
3620adantr 484 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Er Word (𝐼 × 2o))
3726adantr 484 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
38343adant3r3 1181 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
39 simpr3 1193 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ Word (𝐼 × 2o))
4011adantr 484 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
4139, 40eleqtrd 2854 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
428, 22mndcl 17985 . . . . . 6 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4337, 38, 41, 42syl3anc 1368 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4443, 40eleqtrrd 2855 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ Word (𝐼 × 2o))
4536, 44erref 8319 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧))
46303adant3r3 1181 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
47323adant3r3 1181 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
488, 22mndass 17986 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
4937, 46, 47, 41, 48syl13anc 1369 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
5045, 49breqtrd 5058 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
51 wrd0 13938 . . 3 ∅ ∈ Word (𝐼 × 2o)
5251a1i 11 . 2 (𝐼𝑉 → ∅ ∈ Word (𝐼 × 2o))
5351, 11eleqtrid 2858 . . . . . 6 (𝐼𝑉 → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5453adantr 484 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5511eleq2d 2837 . . . . . 6 (𝐼𝑉 → (𝑥 ∈ Word (𝐼 × 2o) ↔ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))))
5655biimpa 480 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
572, 8, 22frmdadd 18086 . . . . 5 ((∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
5854, 56, 57syl2anc 587 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
59 ccatlid 13987 . . . . 5 (𝑥 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑥) = 𝑥)
6059adantl 485 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅ ++ 𝑥) = 𝑥)
6158, 60eqtrd 2793 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = 𝑥)
6220adantr 484 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Er Word (𝐼 × 2o))
63 simpr 488 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
6462, 63erref 8319 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 𝑥)
6561, 64eqbrtrd 5054 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) 𝑥)
66 revcl 14170 . . . 4 (𝑥 ∈ Word (𝐼 × 2o) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
6766adantl 485 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
68 eqid 2758 . . . . 5 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6968efgmf 18906 . . . 4 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
7069a1i 11 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o))
71 wrdco 14240 . . 3 (((reverse‘𝑥) ∈ Word (𝐼 × 2o) ∧ (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7267, 70, 71syl2anc 587 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7311adantr 484 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
7472, 73eleqtrd 2854 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
752, 8, 22frmdadd 18086 . . . 4 ((((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7674, 56, 75syl2anc 587 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7717eleq2d 2837 . . . . 5 (𝐼𝑉 → (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) ↔ 𝑥 ∈ Word (𝐼 × 2o)))
7877biimpar 481 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
79 eqid 2758 . . . . 5 (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))
8013, 3, 68, 79efginvrel1 18921 . . . 4 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8178, 80syl 17 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8276, 81eqbrtrd 5054 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) ∅)
834, 11, 12, 20, 21, 24, 35, 50, 52, 65, 72, 82qusgrp2 18284 1 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3409  cdif 3855  c0 4225  cop 4528  cotp 4530   class class class wbr 5032  cmpt 5112   I cid 5429   × cxp 5522  ccom 5528  Oncon0 6169  wf 6331  cfv 6335  (class class class)co 7150  cmpo 7152  1oc1o 8105  2oc2o 8106   Er wer 8296  [cec 8297  0cc0 10575  ...cfz 12939  chash 13740  Word cword 13913   ++ cconcat 13969   splice csplice 14158  reversecreverse 14167  ⟨“cs2 14250  Basecbs 16541  +gcplusg 16623  0gc0g 16771  Mndcmnd 17977  freeMndcfrmd 18078  Grpcgrp 18169   ~FG cefg 18899  freeGrpcfrgp 18900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-ot 4531  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-ec 8301  df-qs 8305  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-xnn0 12007  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-lsw 13962  df-concat 13970  df-s1 13997  df-substr 14050  df-pfx 14080  df-splice 14159  df-reverse 14168  df-s2 14257  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-plusg 16636  df-mulr 16637  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-0g 16773  df-imas 16839  df-qus 16840  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-frmd 18080  df-grp 18172  df-efg 18902  df-frgp 18903
This theorem is referenced by:  frgpgrp  18955  frgpinv  18957  frgpmhm  18958
  Copyright terms: Public domain W3C validator