MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgp0 Structured version   Visualization version   GIF version

Theorem frgp0 19802
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
Assertion
Ref Expression
frgp0 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))

Proof of Theorem frgp0
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 𝑧 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgp0.m . . 3 𝐺 = (freeGrp‘𝐼)
2 eqid 2740 . . 3 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
3 frgp0.r . . 3 = ( ~FG𝐼)
41, 2, 3frgpval 19800 . 2 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
5 2on 8536 . . . . 5 2o ∈ On
6 xpexg 7785 . . . . 5 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
75, 6mpan2 690 . . . 4 (𝐼𝑉 → (𝐼 × 2o) ∈ V)
8 eqid 2740 . . . . 5 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
92, 8frmdbas 18887 . . . 4 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
107, 9syl 17 . . 3 (𝐼𝑉 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1110eqcomd 2746 . 2 (𝐼𝑉 → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
12 eqidd 2741 . 2 (𝐼𝑉 → (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o))))
13 eqid 2740 . . . 4 ( I ‘Word (𝐼 × 2o)) = ( I ‘Word (𝐼 × 2o))
1413, 3efger 19760 . . 3 Er ( I ‘Word (𝐼 × 2o))
15 wrdexg 14572 . . . . 5 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
16 fvi 6998 . . . . 5 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
177, 15, 163syl 18 . . . 4 (𝐼𝑉 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
18 ereq2 8771 . . . 4 (( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o) → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
1917, 18syl 17 . . 3 (𝐼𝑉 → ( Er ( I ‘Word (𝐼 × 2o)) ↔ Er Word (𝐼 × 2o)))
2014, 19mpbii 233 . 2 (𝐼𝑉 Er Word (𝐼 × 2o))
21 fvexd 6935 . 2 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ V)
22 eqid 2740 . . . 4 (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o)))
231, 2, 3, 22frgpcpbl 19801 . . 3 ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑))
2423a1i 11 . 2 (𝐼𝑉 → ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑)))
252frmdmnd 18894 . . . . . 6 ((𝐼 × 2o) ∈ V → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
267, 25syl 17 . . . . 5 (𝐼𝑉 → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
27263ad2ant1 1133 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
28 simp2 1137 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
29113ad2ant1 1133 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
3028, 29eleqtrd 2846 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
31 simp3 1138 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ Word (𝐼 × 2o))
3231, 29eleqtrd 2846 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
338, 22mndcl 18780 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3427, 30, 32, 33syl3anc 1371 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3534, 29eleqtrrd 2847 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o)) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ Word (𝐼 × 2o))
3620adantr 480 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Er Word (𝐼 × 2o))
3726adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
38343adant3r3 1184 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
39 simpr3 1196 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ Word (𝐼 × 2o))
4011adantr 480 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
4139, 40eleqtrd 2846 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
428, 22mndcl 18780 . . . . . 6 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4337, 38, 41, 42syl3anc 1371 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
4443, 40eleqtrrd 2847 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ∈ Word (𝐼 × 2o))
4536, 44erref 8783 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧))
46303adant3r3 1184 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
47323adant3r3 1184 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
488, 22mndass 18781 . . . 4 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ (𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑦 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑧 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
4937, 46, 47, 41, 48syl13anc 1372 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) = (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
5045, 49breqtrd 5192 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ Word (𝐼 × 2o) ∧ 𝑦 ∈ Word (𝐼 × 2o) ∧ 𝑧 ∈ Word (𝐼 × 2o))) → ((𝑥(+g‘(freeMnd‘(𝐼 × 2o)))𝑦)(+g‘(freeMnd‘(𝐼 × 2o)))𝑧) (𝑥(+g‘(freeMnd‘(𝐼 × 2o)))(𝑦(+g‘(freeMnd‘(𝐼 × 2o)))𝑧)))
51 wrd0 14587 . . 3 ∅ ∈ Word (𝐼 × 2o)
5251a1i 11 . 2 (𝐼𝑉 → ∅ ∈ Word (𝐼 × 2o))
5351, 11eleqtrid 2850 . . . . . 6 (𝐼𝑉 → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5453adantr 480 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
5511eleq2d 2830 . . . . . 6 (𝐼𝑉 → (𝑥 ∈ Word (𝐼 × 2o) ↔ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))))
5655biimpa 476 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
572, 8, 22frmdadd 18890 . . . . 5 ((∅ ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
5854, 56, 57syl2anc 583 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (∅ ++ 𝑥))
59 ccatlid 14634 . . . . 5 (𝑥 ∈ Word (𝐼 × 2o) → (∅ ++ 𝑥) = 𝑥)
6059adantl 481 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅ ++ 𝑥) = 𝑥)
6158, 60eqtrd 2780 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = 𝑥)
6220adantr 480 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Er Word (𝐼 × 2o))
63 simpr 484 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ Word (𝐼 × 2o))
6462, 63erref 8783 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 𝑥)
6561, 64eqbrtrd 5188 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (∅(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) 𝑥)
66 revcl 14809 . . . 4 (𝑥 ∈ Word (𝐼 × 2o) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
6766adantl 481 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (reverse‘𝑥) ∈ Word (𝐼 × 2o))
68 eqid 2740 . . . . 5 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
6968efgmf 19755 . . . 4 (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)
7069a1i 11 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o))
71 wrdco 14880 . . 3 (((reverse‘𝑥) ∈ Word (𝐼 × 2o) ∧ (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩):(𝐼 × 2o)⟶(𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7267, 70, 71syl2anc 583 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ Word (𝐼 × 2o))
7311adantr 480 . . . . 5 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → Word (𝐼 × 2o) = (Base‘(freeMnd‘(𝐼 × 2o))))
7472, 73eleqtrd 2846 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → ((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
752, 8, 22frmdadd 18890 . . . 4 ((((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑥 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7674, 56, 75syl2anc 583 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) = (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥))
7717eleq2d 2830 . . . . 5 (𝐼𝑉 → (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) ↔ 𝑥 ∈ Word (𝐼 × 2o)))
7877biimpar 477 . . . 4 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → 𝑥 ∈ ( I ‘Word (𝐼 × 2o)))
79 eqid 2740 . . . . 5 (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2o)) ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)‘𝑤)”⟩⟩)))
8013, 3, 68, 79efginvrel1 19770 . . . 4 (𝑥 ∈ ( I ‘Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8178, 80syl 17 . . 3 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥)) ++ 𝑥) ∅)
8276, 81eqbrtrd 5188 . 2 ((𝐼𝑉𝑥 ∈ Word (𝐼 × 2o)) → (((𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩) ∘ (reverse‘𝑥))(+g‘(freeMnd‘(𝐼 × 2o)))𝑥) ∅)
834, 11, 12, 20, 21, 24, 35, 50, 52, 65, 72, 82qusgrp2 19098 1 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  c0 4352  cop 4654  cotp 4656   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  ccom 5704  Oncon0 6395  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516   Er wer 8760  [cec 8761  0cc0 11184  ...cfz 13567  chash 14379  Word cword 14562   ++ cconcat 14618   splice csplice 14797  reversecreverse 14806  ⟨“cs2 14890  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Mndcmnd 18772  freeMndcfrmd 18882  Grpcgrp 18973   ~FG cefg 19748  freeGrpcfrgp 19749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-frmd 18884  df-grp 18976  df-efg 19751  df-frgp 19752
This theorem is referenced by:  frgpgrp  19804  frgpinv  19806  frgpmhm  19807
  Copyright terms: Public domain W3C validator