Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi2d | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | 3anbi12d 1435 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: vtocl3gaf 3506 vtocl3ga 3507 offval22 7899 ereq2 8464 wrdl3s3 14605 mhmlem 18610 isdrngrd 19932 lmodlema 20043 mdetunilem9 21677 neiptoptop 22190 neiptopnei 22191 hausnei 22387 regr1lem2 22799 ustuqtop4 23304 utopsnneiplem 23307 axtg5seg 26730 axtgupdim2 26736 axtgeucl 26737 brbtwn 27170 axlowdim 27232 axeuclidlem 27233 incistruhgr 27352 issubgr2 27542 wwlksnwwlksnon 28181 upgr4cycl4dv4e 28450 isnvlem 28873 csmdsymi 30597 br8d 30851 slmdlema 31358 carsgmon 32181 sitgclg 32209 tgoldbachgt 32543 axtgupdim2ALTV 32548 bnj852 32801 bnj18eq1 32807 bnj938 32817 bnj983 32831 bnj1318 32905 bnj1326 32906 cvmlift3lem4 33184 cvmlift3 33190 br8 33629 br6 33630 br4 33631 brttrcl 33699 ttrclss 33706 ttrclselem2 33712 brcolinear2 34287 colineardim1 34290 brfs 34308 fscgr 34309 btwnconn1lem7 34322 brsegle 34337 unblimceq0 34614 sdclem2 35827 sdclem1 35828 sdc 35829 fdc 35830 cdleme18d 38236 cdlemk35s 38878 cdlemk39s 38880 monotoddzz 40681 jm2.27 40746 mendlmod 40934 fiiuncl 42502 wessf1ornlem 42611 fmulcl 43012 fmuldfeqlem1 43013 fprodcncf 43331 dvmptfprodlem 43375 dvmptfprod 43376 dvnprodlem2 43378 stoweidlem6 43437 stoweidlem8 43439 stoweidlem31 43462 stoweidlem34 43465 stoweidlem43 43474 stoweidlem52 43483 fourierdlem41 43579 fourierdlem48 43585 fourierdlem49 43586 ovnsubaddlem1 43998 ichexmpl2 44810 9gbo 45114 11gbo 45115 lmod1 45721 |
Copyright terms: Public domain | W3C validator |