Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi2d | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
3anbi2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜃)) | |
2 | 3anbi1d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | 3anbi12d 1436 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: vtocl3gaf 3517 vtocl3ga 3518 offval22 7937 ereq2 8515 brttrcl 9480 ttrclss 9487 ttrclselem2 9493 wrdl3s3 14686 mhmlem 18704 isdrngrd 20026 lmodlema 20137 mdetunilem9 21778 neiptoptop 22291 neiptopnei 22292 hausnei 22488 regr1lem2 22900 ustuqtop4 23405 utopsnneiplem 23408 axtg5seg 26835 axtgupdim2 26841 axtgeucl 26842 brbtwn 27276 axlowdim 27338 axeuclidlem 27339 incistruhgr 27458 issubgr2 27648 wwlksnwwlksnon 28289 upgr4cycl4dv4e 28558 isnvlem 28981 csmdsymi 30705 br8d 30959 slmdlema 31465 carsgmon 32290 sitgclg 32318 tgoldbachgt 32652 axtgupdim2ALTV 32657 bnj852 32910 bnj18eq1 32916 bnj938 32926 bnj983 32940 bnj1318 33014 bnj1326 33015 cvmlift3lem4 33293 cvmlift3 33299 br8 33732 br6 33733 br4 33734 brcolinear2 34369 colineardim1 34372 brfs 34390 fscgr 34391 btwnconn1lem7 34404 brsegle 34419 unblimceq0 34696 sdclem2 35909 sdclem1 35910 sdc 35911 fdc 35912 cdleme18d 38316 cdlemk35s 38958 cdlemk39s 38960 monotoddzz 40772 jm2.27 40837 mendlmod 41025 minregex2 41149 fiiuncl 42620 wessf1ornlem 42729 fmulcl 43129 fmuldfeqlem1 43130 fprodcncf 43448 dvmptfprodlem 43492 dvmptfprod 43493 dvnprodlem2 43495 stoweidlem6 43554 stoweidlem8 43556 stoweidlem31 43579 stoweidlem34 43582 stoweidlem43 43591 stoweidlem52 43600 fourierdlem41 43696 fourierdlem48 43702 fourierdlem49 43703 ovnsubaddlem1 44115 ichexmpl2 44933 9gbo 45237 11gbo 45238 lmod1 45844 |
Copyright terms: Public domain | W3C validator |