Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneq Structured version   Visualization version   GIF version

Theorem dissneq 35512
Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
dissneq ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Distinct variable group:   𝑢,𝐴,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑢)   𝐶(𝑥,𝑢)

Proof of Theorem dissneq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dissneq.c . . 3 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
2 sneq 4571 . . . . . 6 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32eqeq2d 2749 . . . . 5 (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥}))
43cbvrexvw 3384 . . . 4 (∃𝑧𝐴 𝑢 = {𝑧} ↔ ∃𝑥𝐴 𝑢 = {𝑥})
54abbii 2808 . . 3 {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
61, 5eqtr4i 2769 . 2 𝐶 = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
76dissneqlem 35511 1 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  wss 3887  𝒫 cpw 4533  {csn 4561  cfv 6433  TopOnctopon 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-topgen 17154  df-top 22043  df-topon 22060
This theorem is referenced by:  topdifinffinlem  35518
  Copyright terms: Public domain W3C validator