Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneq Structured version   Visualization version   GIF version

Theorem dissneq 37324
Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
dissneq ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Distinct variable group:   𝑢,𝐴,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑢)   𝐶(𝑥,𝑢)

Proof of Theorem dissneq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dissneq.c . . 3 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
2 sneq 4641 . . . . . 6 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32eqeq2d 2746 . . . . 5 (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥}))
43cbvrexvw 3236 . . . 4 (∃𝑧𝐴 𝑢 = {𝑧} ↔ ∃𝑥𝐴 𝑢 = {𝑥})
54abbii 2807 . . 3 {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
61, 5eqtr4i 2766 . 2 𝐶 = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
76dissneqlem 37323 1 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {cab 2712  wrex 3068  wss 3963  𝒫 cpw 4605  {csn 4631  cfv 6563  TopOnctopon 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-topgen 17490  df-top 22916  df-topon 22933
This theorem is referenced by:  topdifinffinlem  37330
  Copyright terms: Public domain W3C validator