Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneq Structured version   Visualization version   GIF version

Theorem dissneq 35439
Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
dissneq ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Distinct variable group:   𝑢,𝐴,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑢)   𝐶(𝑥,𝑢)

Proof of Theorem dissneq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dissneq.c . . 3 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
2 sneq 4568 . . . . . 6 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32eqeq2d 2749 . . . . 5 (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥}))
43cbvrexvw 3373 . . . 4 (∃𝑧𝐴 𝑢 = {𝑧} ↔ ∃𝑥𝐴 𝑢 = {𝑥})
54abbii 2809 . . 3 {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
61, 5eqtr4i 2769 . 2 𝐶 = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
76dissneqlem 35438 1 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  wss 3883  𝒫 cpw 4530  {csn 4558  cfv 6418  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-topgen 17071  df-top 21951  df-topon 21968
This theorem is referenced by:  topdifinffinlem  35445
  Copyright terms: Public domain W3C validator