| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dissneq | Structured version Visualization version GIF version | ||
| Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.) |
| Ref | Expression |
|---|---|
| dissneq.c | ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Ref | Expression |
|---|---|
| dissneq | ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dissneq.c | . . 3 ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
| 2 | sneq 4581 | . . . . . 6 ⊢ (𝑧 = 𝑥 → {𝑧} = {𝑥}) | |
| 3 | 2 | eqeq2d 2742 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥})) |
| 4 | 3 | cbvrexvw 3211 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑢 = {𝑧} ↔ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}) |
| 5 | 4 | abbii 2798 | . . 3 ⊢ {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| 6 | 1, 5 | eqtr4i 2757 | . 2 ⊢ 𝐶 = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
| 7 | 6 | dissneqlem 37374 | 1 ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ⊆ wss 3897 𝒫 cpw 4545 {csn 4571 ‘cfv 6476 TopOnctopon 22820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-topgen 17342 df-top 22804 df-topon 22821 |
| This theorem is referenced by: topdifinffinlem 37381 |
| Copyright terms: Public domain | W3C validator |