Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneq Structured version   Visualization version   GIF version

Theorem dissneq 36525
Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐢 = {𝑒 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑒 = {π‘₯}}
Assertion
Ref Expression
dissneq ((𝐢 βŠ† 𝐡 ∧ 𝐡 ∈ (TopOnβ€˜π΄)) β†’ 𝐡 = 𝒫 𝐴)
Distinct variable group:   𝑒,𝐴,π‘₯
Allowed substitution hints:   𝐡(π‘₯,𝑒)   𝐢(π‘₯,𝑒)

Proof of Theorem dissneq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dissneq.c . . 3 𝐢 = {𝑒 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑒 = {π‘₯}}
2 sneq 4638 . . . . . 6 (𝑧 = π‘₯ β†’ {𝑧} = {π‘₯})
32eqeq2d 2743 . . . . 5 (𝑧 = π‘₯ β†’ (𝑒 = {𝑧} ↔ 𝑒 = {π‘₯}))
43cbvrexvw 3235 . . . 4 (βˆƒπ‘§ ∈ 𝐴 𝑒 = {𝑧} ↔ βˆƒπ‘₯ ∈ 𝐴 𝑒 = {π‘₯})
54abbii 2802 . . 3 {𝑒 ∣ βˆƒπ‘§ ∈ 𝐴 𝑒 = {𝑧}} = {𝑒 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑒 = {π‘₯}}
61, 5eqtr4i 2763 . 2 𝐢 = {𝑒 ∣ βˆƒπ‘§ ∈ 𝐴 𝑒 = {𝑧}}
76dissneqlem 36524 1 ((𝐢 βŠ† 𝐡 ∧ 𝐡 ∈ (TopOnβ€˜π΄)) β†’ 𝐡 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆƒwrex 3070   βŠ† wss 3948  π’« cpw 4602  {csn 4628  β€˜cfv 6543  TopOnctopon 22632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-topgen 17393  df-top 22616  df-topon 22633
This theorem is referenced by:  topdifinffinlem  36531
  Copyright terms: Public domain W3C validator