| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dissneq | Structured version Visualization version GIF version | ||
| Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.) |
| Ref | Expression |
|---|---|
| dissneq.c | ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Ref | Expression |
|---|---|
| dissneq | ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dissneq.c | . . 3 ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
| 2 | sneq 4601 | . . . . . 6 ⊢ (𝑧 = 𝑥 → {𝑧} = {𝑥}) | |
| 3 | 2 | eqeq2d 2741 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥})) |
| 4 | 3 | cbvrexvw 3217 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑢 = {𝑧} ↔ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}) |
| 5 | 4 | abbii 2797 | . . 3 ⊢ {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| 6 | 1, 5 | eqtr4i 2756 | . 2 ⊢ 𝐶 = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
| 7 | 6 | dissneqlem 37323 | 1 ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 ⊆ wss 3916 𝒫 cpw 4565 {csn 4591 ‘cfv 6513 TopOnctopon 22803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-topgen 17412 df-top 22787 df-topon 22804 |
| This theorem is referenced by: topdifinffinlem 37330 |
| Copyright terms: Public domain | W3C validator |