![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dissneq | Structured version Visualization version GIF version |
Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.) |
Ref | Expression |
---|---|
dissneq.c | ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Ref | Expression |
---|---|
dissneq | ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dissneq.c | . . 3 ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
2 | sneq 4658 | . . . . . 6 ⊢ (𝑧 = 𝑥 → {𝑧} = {𝑥}) | |
3 | 2 | eqeq2d 2751 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥})) |
4 | 3 | cbvrexvw 3244 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑢 = {𝑧} ↔ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}) |
5 | 4 | abbii 2812 | . . 3 ⊢ {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
6 | 1, 5 | eqtr4i 2771 | . 2 ⊢ 𝐶 = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
7 | 6 | dissneqlem 37306 | 1 ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ‘cfv 6573 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-topgen 17503 df-top 22921 df-topon 22938 |
This theorem is referenced by: topdifinffinlem 37313 |
Copyright terms: Public domain | W3C validator |