![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dissneq | Structured version Visualization version GIF version |
Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.) |
Ref | Expression |
---|---|
dissneq.c | ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Ref | Expression |
---|---|
dissneq | ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dissneq.c | . . 3 ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
2 | sneq 4641 | . . . . . 6 ⊢ (𝑧 = 𝑥 → {𝑧} = {𝑥}) | |
3 | 2 | eqeq2d 2746 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥})) |
4 | 3 | cbvrexvw 3236 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 𝑢 = {𝑧} ↔ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}) |
5 | 4 | abbii 2807 | . . 3 ⊢ {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
6 | 1, 5 | eqtr4i 2766 | . 2 ⊢ 𝐶 = {𝑢 ∣ ∃𝑧 ∈ 𝐴 𝑢 = {𝑧}} |
7 | 6 | dissneqlem 37323 | 1 ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 ‘cfv 6563 TopOnctopon 22932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-topgen 17490 df-top 22916 df-topon 22933 |
This theorem is referenced by: topdifinffinlem 37330 |
Copyright terms: Public domain | W3C validator |