Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissneq Structured version   Visualization version   GIF version

Theorem dissneq 37375
Description: Any topology that contains every single-point set is the discrete topology. (Contributed by ML, 16-Jul-2020.)
Hypothesis
Ref Expression
dissneq.c 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
dissneq ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Distinct variable group:   𝑢,𝐴,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑢)   𝐶(𝑥,𝑢)

Proof of Theorem dissneq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dissneq.c . . 3 𝐶 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
2 sneq 4581 . . . . . 6 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32eqeq2d 2742 . . . . 5 (𝑧 = 𝑥 → (𝑢 = {𝑧} ↔ 𝑢 = {𝑥}))
43cbvrexvw 3211 . . . 4 (∃𝑧𝐴 𝑢 = {𝑧} ↔ ∃𝑥𝐴 𝑢 = {𝑥})
54abbii 2798 . . 3 {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}} = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
61, 5eqtr4i 2757 . 2 𝐶 = {𝑢 ∣ ∃𝑧𝐴 𝑢 = {𝑧}}
76dissneqlem 37374 1 ((𝐶𝐵𝐵 ∈ (TopOn‘𝐴)) → 𝐵 = 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  wss 3897  𝒫 cpw 4545  {csn 4571  cfv 6476  TopOnctopon 22820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-topgen 17342  df-top 22804  df-topon 22821
This theorem is referenced by:  topdifinffinlem  37381
  Copyright terms: Public domain W3C validator