| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exmidne | Structured version Visualization version GIF version | ||
| Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
| Ref | Expression |
|---|---|
| exmidne | ⊢ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqne 2933 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | orri 862 | 1 ⊢ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ne 2926 |
| This theorem is referenced by: elnn1uz2 12844 hashv01gt1 14270 numclwwlk3lem2lem 30345 hashxpe 32765 drngmxidlr 33428 constrfin 33715 constrelextdg2 33716 subfacp1lem6 35160 tendoeq2 40756 ax6e2ndeqVD 44885 ax6e2ndeqALT 44907 |
| Copyright terms: Public domain | W3C validator |