MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidne Structured version   Visualization version   GIF version

Theorem exmidne 2936
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.)
Assertion
Ref Expression
exmidne (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem exmidne
StepHypRef Expression
1 neqne 2934 . 2 𝐴 = 𝐵𝐴𝐵)
21orri 862 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-ne 2927
This theorem is referenced by:  elnn1uz2  12891  hashv01gt1  14317  numclwwlk3lem2lem  30319  hashxpe  32739  drngmxidlr  33456  constrfin  33743  constrelextdg2  33744  subfacp1lem6  35179  tendoeq2  40775  ax6e2ndeqVD  44905  ax6e2ndeqALT  44927
  Copyright terms: Public domain W3C validator