MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidne Structured version   Visualization version   GIF version

Theorem exmidne 2953
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.)
Assertion
Ref Expression
exmidne (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem exmidne
StepHypRef Expression
1 neqne 2951 . 2 𝐴 = 𝐵𝐴𝐵)
21orri 859 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-ne 2944
This theorem is referenced by:  elnn1uz2  12665  hashv01gt1  14059  numclwwlk3lem2lem  28747  hashxpe  31127  subfacp1lem6  33147  tendoeq2  38788  ax6e2ndeqVD  42529  ax6e2ndeqALT  42551
  Copyright terms: Public domain W3C validator