MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidne Structured version   Visualization version   GIF version

Theorem exmidne 2939
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.)
Assertion
Ref Expression
exmidne (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem exmidne
StepHypRef Expression
1 neqne 2937 . 2 𝐴 = 𝐵𝐴𝐵)
21orri 862 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1541  wne 2929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-ne 2930
This theorem is referenced by:  elnn1uz2  12829  hashv01gt1  14259  numclwwlk3lem2lem  30384  fconst7v  32624  hashxpe  32815  drngmxidlr  33487  constrfin  33831  constrelextdg2  33832  subfacp1lem6  35301  tendoeq2  40946  ax6e2ndeqVD  45065  ax6e2ndeqALT  45087
  Copyright terms: Public domain W3C validator