MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidne Structured version   Visualization version   GIF version

Theorem exmidne 2977
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.)
Assertion
Ref Expression
exmidne (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem exmidne
StepHypRef Expression
1 neqne 2975 . 2 𝐴 = 𝐵𝐴𝐵)
21orri 848 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 833   = wceq 1507  wne 2967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-or 834  df-ne 2968
This theorem is referenced by:  elnn1uz2  12142  hashv01gt1  13523  numclwwlk3lem2lem  27943  hashxpe  30279  subfacp1lem6  32017  tendoeq2  37355  ax6e2ndeqVD  40662  ax6e2ndeqALT  40684
  Copyright terms: Public domain W3C validator