![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exmidne | Structured version Visualization version GIF version |
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
Ref | Expression |
---|---|
exmidne | ⊢ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqne 2945 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
2 | 1 | orri 862 | 1 ⊢ (𝐴 = 𝐵 ∨ 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-ne 2938 |
This theorem is referenced by: elnn1uz2 12964 hashv01gt1 14380 numclwwlk3lem2lem 30411 hashxpe 32816 drngmxidlr 33485 constrfin 33750 constrelextdg2 33751 subfacp1lem6 35169 tendoeq2 40756 ax6e2ndeqVD 44906 ax6e2ndeqALT 44928 |
Copyright terms: Public domain | W3C validator |