MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidne Structured version   Visualization version   GIF version

Theorem exmidne 2935
Description: Excluded middle with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 17-Nov-2019.)
Assertion
Ref Expression
exmidne (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem exmidne
StepHypRef Expression
1 neqne 2933 . 2 𝐴 = 𝐵𝐴𝐵)
21orri 862 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-ne 2926
This theorem is referenced by:  elnn1uz2  12884  hashv01gt1  14310  numclwwlk3lem2lem  30312  hashxpe  32732  drngmxidlr  33449  constrfin  33736  constrelextdg2  33737  subfacp1lem6  35172  tendoeq2  40768  ax6e2ndeqVD  44898  ax6e2ndeqALT  44920
  Copyright terms: Public domain W3C validator