Proof of Theorem ax6e2ndeqVD
| Step | Hyp | Ref
| Expression |
| 1 | | ax6e2nd 44578 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| 2 | | ax6e2eq 44577 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
| 3 | 1 | a1d 25 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
| 4 | | exmid 895 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 ∨ ¬ ∀𝑥 𝑥 = 𝑦) |
| 5 | | jao 963 |
. . . 4
⊢
((∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) → ((¬ ∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) → ((∀𝑥 𝑥 = 𝑦 ∨ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))))) |
| 6 | 2, 3, 4, 5 | e000 44787 |
. . 3
⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| 7 | 1, 6 | jaoi 858 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| 8 | | idn1 44594 |
. . . . . . . . . . . . . . . 16
⊢ ( 𝑢 ≠ 𝑣 ▶ 𝑢 ≠ 𝑣 ) |
| 9 | | idn2 44633 |
. . . . . . . . . . . . . . . . 17
⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ) |
| 10 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 = 𝑢) |
| 11 | 9, 10 | e2 44651 |
. . . . . . . . . . . . . . . 16
⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥 = 𝑢 ) |
| 12 | | neeq1 3003 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑢 → (𝑥 ≠ 𝑣 ↔ 𝑢 ≠ 𝑣)) |
| 13 | 12 | biimprcd 250 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ≠ 𝑣 → (𝑥 = 𝑢 → 𝑥 ≠ 𝑣)) |
| 14 | 8, 11, 13 | e12 44744 |
. . . . . . . . . . . . . . 15
⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥 ≠ 𝑣 ) |
| 15 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) |
| 16 | 9, 15 | e2 44651 |
. . . . . . . . . . . . . . 15
⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑦 = 𝑣 ) |
| 17 | | neeq2 3004 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑣 → (𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑣)) |
| 18 | 17 | biimprcd 250 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ≠ 𝑣 → (𝑦 = 𝑣 → 𝑥 ≠ 𝑦)) |
| 19 | 14, 16, 18 | e22 44691 |
. . . . . . . . . . . . . 14
⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥 ≠ 𝑦 ) |
| 20 | | df-ne 2941 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
| 21 | 20 | bicomi 224 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) |
| 22 | | sp 2183 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 23 | 22 | con3i 154 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
| 24 | 21, 23 | sylbir 235 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
| 25 | 19, 24 | e2 44651 |
. . . . . . . . . . . . 13
⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ ¬
∀𝑥 𝑥 = 𝑦 ) |
| 26 | 25 | in2 44625 |
. . . . . . . . . . . 12
⊢ ( 𝑢 ≠ 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) ) |
| 27 | 26 | gen11 44636 |
. . . . . . . . . . 11
⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) ) |
| 28 | | exim 1834 |
. . . . . . . . . . 11
⊢
(∀𝑥((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦)) |
| 29 | 27, 28 | e1a 44647 |
. . . . . . . . . 10
⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦) ) |
| 30 | | nfnae 2439 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
| 31 | 30 | 19.9 2205 |
. . . . . . . . . 10
⊢
(∃𝑥 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
| 32 | | imbi2 348 |
. . . . . . . . . . 11
⊢
((∃𝑥 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) → ((∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦) ↔ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))) |
| 33 | 32 | biimpcd 249 |
. . . . . . . . . 10
⊢
((∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦) → ((∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))) |
| 34 | 29, 31, 33 | e10 44714 |
. . . . . . . . 9
⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) ) |
| 35 | 34 | gen11 44636 |
. . . . . . . 8
⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) ) |
| 36 | | exim 1834 |
. . . . . . . 8
⊢
(∀𝑦(∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) |
| 37 | 35, 36 | e1a 44647 |
. . . . . . 7
⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦) ) |
| 38 | | excom 2162 |
. . . . . . 7
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| 39 | | imbi1 347 |
. . . . . . . 8
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦) ↔ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦))) |
| 40 | 39 | biimprcd 250 |
. . . . . . 7
⊢
((∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦) → ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦))) |
| 41 | 37, 38, 40 | e10 44714 |
. . . . . 6
⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦) ) |
| 42 | | hbnae 2437 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
| 43 | 42 | eximi 1835 |
. . . . . . . 8
⊢
(∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ∃𝑦∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
| 44 | | nfa1 2151 |
. . . . . . . . 9
⊢
Ⅎ𝑦∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦 |
| 45 | 44 | 19.9 2205 |
. . . . . . . 8
⊢
(∃𝑦∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
| 46 | 43, 45 | sylib 218 |
. . . . . . 7
⊢
(∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
| 47 | | sp 2183 |
. . . . . . 7
⊢
(∀𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
| 48 | 46, 47 | syl 17 |
. . . . . 6
⊢
(∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
| 49 | | imim1 83 |
. . . . . 6
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦) → ((∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))) |
| 50 | 41, 48, 49 | e10 44714 |
. . . . 5
⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) ) |
| 51 | | orc 868 |
. . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
| 52 | 51 | imim2i 16 |
. . . . 5
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
| 53 | 50, 52 | e1a 44647 |
. . . 4
⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) ) |
| 54 | 53 | in1 44591 |
. . 3
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
| 55 | | idn1 44594 |
. . . . . 6
⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 ) |
| 56 | | ax-1 6 |
. . . . . 6
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑢 = 𝑣)) |
| 57 | 55, 56 | e1a 44647 |
. . . . 5
⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑢 = 𝑣) ) |
| 58 | | olc 869 |
. . . . . 6
⊢ (𝑢 = 𝑣 → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
| 59 | 58 | imim2i 16 |
. . . . 5
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑢 = 𝑣) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
| 60 | 57, 59 | e1a 44647 |
. . . 4
⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) ) |
| 61 | 60 | in1 44591 |
. . 3
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
| 62 | | exmidne 2950 |
. . 3
⊢ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣) |
| 63 | | jao 963 |
. . . 4
⊢ ((𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) → ((𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) → ((𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))))) |
| 64 | 63 | com12 32 |
. . 3
⊢ ((𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) → ((𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) → ((𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))))) |
| 65 | 54, 61, 62, 64 | e000 44787 |
. 2
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
| 66 | 7, 65 | impbii 209 |
1
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |