MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3lem2lem Structured version   Visualization version   GIF version

Theorem numclwwlk3lem2lem 29904
Description: Lemma for numclwwlk3lem2 29905: The set of closed vertices of a fixed length 𝑁 on a fixed vertex 𝑉 is the union of the set of closed walks of length 𝑁 at 𝑉 with the last but one vertex being 𝑉 and the set of closed walks of length 𝑁 at 𝑉 with the last but one vertex not being 𝑉. (Contributed by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk3lem2.c 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
numclwwlk3lem2.h 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
Assertion
Ref Expression
numclwwlk3lem2lem ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = ((𝑋𝐻𝑁) βˆͺ (𝑋𝐢𝑁)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀
Allowed substitution hints:   𝐢(𝑀,𝑣,𝑛)   𝐻(𝑀,𝑣,𝑛)   𝑉(𝑀)

Proof of Theorem numclwwlk3lem2lem
StepHypRef Expression
1 numclwwlk3lem2.h . . . 4 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
21numclwwlkovh0 29893 . . 3 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋𝐻𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋})
3 numclwwlk3lem2.c . . . 4 𝐢 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
432clwwlk 29868 . . 3 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋𝐢𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
52, 4uneq12d 4164 . 2 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ ((𝑋𝐻𝑁) βˆͺ (𝑋𝐢𝑁)) = ({𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋} βˆͺ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
6 unrab 4305 . . 3 ({𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋} βˆͺ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ ((π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋 ∨ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)}
7 exmidne 2949 . . . . . 6 ((π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋 ∨ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋)
8 orcom 867 . . . . . 6 (((π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋 ∨ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋) ↔ ((π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋 ∨ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋))
97, 8mpbir 230 . . . . 5 ((π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋 ∨ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)
109a1i 11 . . . 4 (𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) β†’ ((π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋 ∨ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋))
1110rabeqc 3443 . . 3 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ ((π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋 ∨ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋)} = (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)
126, 11eqtri 2759 . 2 ({𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋} βˆͺ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}) = (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)
135, 12eqtr2di 2788 1 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = ((𝑋𝐻𝑁) βˆͺ (𝑋𝐢𝑁)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∨ wo 844   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  {crab 3431   βˆͺ cun 3946  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414   βˆ’ cmin 11449  2c2 12272  β„€β‰₯cuz 12827  ClWWalksNOncclwwlknon 29608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  numclwwlk3lem2  29905
  Copyright terms: Public domain W3C validator