| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk3lem2lem | Structured version Visualization version GIF version | ||
| Description: Lemma for numclwwlk3lem2 30320: The set of closed vertices of a fixed length 𝑁 on a fixed vertex 𝑉 is the union of the set of closed walks of length 𝑁 at 𝑉 with the last but one vertex being 𝑉 and the set of closed walks of length 𝑁 at 𝑉 with the last but one vertex not being 𝑉. (Contributed by AV, 1-May-2022.) |
| Ref | Expression |
|---|---|
| numclwwlk3lem2.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
| numclwwlk3lem2.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
| Ref | Expression |
|---|---|
| numclwwlk3lem2lem | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numclwwlk3lem2.h | . . . 4 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
| 2 | 1 | numclwwlkovh0 30308 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
| 3 | numclwwlk3lem2.c | . . . 4 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
| 4 | 3 | 2clwwlk 30283 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) |
| 5 | 2, 4 | uneq12d 4140 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁)) = ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∪ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})) |
| 6 | unrab 4286 | . . 3 ⊢ ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∪ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ (𝑤‘(𝑁 − 2)) = 𝑋)} | |
| 7 | exmidne 2937 | . . . . . 6 ⊢ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ (𝑤‘(𝑁 − 2)) ≠ 𝑋) | |
| 8 | orcom 870 | . . . . . 6 ⊢ (((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ (𝑤‘(𝑁 − 2)) = 𝑋) ↔ ((𝑤‘(𝑁 − 2)) = 𝑋 ∨ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) | |
| 9 | 7, 8 | mpbir 231 | . . . . 5 ⊢ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ (𝑤‘(𝑁 − 2)) = 𝑋) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ (𝑤‘(𝑁 − 2)) = 𝑋)) |
| 11 | 10 | rabeqc 3424 | . . 3 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ∨ (𝑤‘(𝑁 − 2)) = 𝑋)} = (𝑋(ClWWalksNOn‘𝐺)𝑁) |
| 12 | 6, 11 | eqtri 2753 | . 2 ⊢ ({𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∪ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) = (𝑋(ClWWalksNOn‘𝐺)𝑁) |
| 13 | 5, 12 | eqtr2di 2782 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = ((𝑋𝐻𝑁) ∪ (𝑋𝐶𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 {crab 3411 ∪ cun 3920 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 − cmin 11423 2c2 12252 ℤ≥cuz 12809 ClWWalksNOncclwwlknon 30023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 |
| This theorem is referenced by: numclwwlk3lem2 30320 |
| Copyright terms: Public domain | W3C validator |