Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem6 Structured version   Visualization version   GIF version

Theorem subfacp1lem6 35172
Description: Lemma for subfacp1 35173. By induction, we cut up the set of all derangements on 𝑁 + 1 according to the 𝑁 possible values of (𝑓‘1) (since (𝑓‘1) ≠ 1), and for each set for fixed 𝑀 = (𝑓‘1), the subset of derangements with (𝑓𝑀) = 1 has size 𝑆(𝑁 − 1) (by subfacp1lem3 35169), while the subset with (𝑓𝑀) ≠ 1 has size 𝑆(𝑁) (by subfacp1lem5 35171). Adding it all up yields the desired equation 𝑁(𝑆(𝑁) + 𝑆(𝑁 − 1)) for the number of derangements on 𝑁 + 1. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
Assertion
Ref Expression
subfacp1lem6 (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝑁,𝑛,𝑥,𝑦   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacp1lem6
Dummy variables 𝑔 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 12198 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21nnnn0d 12503 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
3 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
4 subfac.n . . . . 5 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
53, 4subfacval 35160 . . . 4 ((𝑁 + 1) ∈ ℕ0 → (𝑆‘(𝑁 + 1)) = (𝐷‘(1...(𝑁 + 1))))
62, 5syl 17 . . 3 (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝐷‘(1...(𝑁 + 1))))
7 fzfid 13938 . . . . 5 (𝑁 ∈ ℕ → (1...(𝑁 + 1)) ∈ Fin)
83derangval 35154 . . . . 5 ((1...(𝑁 + 1)) ∈ Fin → (𝐷‘(1...(𝑁 + 1))) = (♯‘{𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}))
97, 8syl 17 . . . 4 (𝑁 ∈ ℕ → (𝐷‘(1...(𝑁 + 1))) = (♯‘{𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}))
10 subfacp1lem.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
1110fveq2i 6861 . . . 4 (♯‘𝐴) = (♯‘{𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)})
129, 11eqtr4di 2782 . . 3 (𝑁 ∈ ℕ → (𝐷‘(1...(𝑁 + 1))) = (♯‘𝐴))
13 nnuz 12836 . . . . . . . . . . 11 ℕ = (ℤ‘1)
141, 13eleqtrdi 2838 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘1))
15 eluzfz1 13492 . . . . . . . . . 10 ((𝑁 + 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑁 + 1)))
1614, 15syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ (1...(𝑁 + 1)))
17 f1of 6800 . . . . . . . . . 10 (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑓:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
1817adantr 480 . . . . . . . . 9 ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦) → 𝑓:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
19 ffvelcdm 7053 . . . . . . . . . 10 ((𝑓:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → (𝑓‘1) ∈ (1...(𝑁 + 1)))
2019expcom 413 . . . . . . . . 9 (1 ∈ (1...(𝑁 + 1)) → (𝑓:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) → (𝑓‘1) ∈ (1...(𝑁 + 1))))
2116, 18, 20syl2im 40 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦) → (𝑓‘1) ∈ (1...(𝑁 + 1))))
2221ss2abdv 4029 . . . . . . 7 (𝑁 ∈ ℕ → {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓 ∣ (𝑓‘1) ∈ (1...(𝑁 + 1))})
23 fveq1 6857 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑔‘1) = (𝑓‘1))
2423eleq1d 2813 . . . . . . . 8 (𝑔 = 𝑓 → ((𝑔‘1) ∈ (1...(𝑁 + 1)) ↔ (𝑓‘1) ∈ (1...(𝑁 + 1))))
2524cbvabv 2799 . . . . . . 7 {𝑔 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))} = {𝑓 ∣ (𝑓‘1) ∈ (1...(𝑁 + 1))}
2622, 10, 253sstr4g 4000 . . . . . 6 (𝑁 ∈ ℕ → 𝐴 ⊆ {𝑔 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))})
27 ssabral 4028 . . . . . 6 (𝐴 ⊆ {𝑔 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))} ↔ ∀𝑔𝐴 (𝑔‘1) ∈ (1...(𝑁 + 1)))
2826, 27sylib 218 . . . . 5 (𝑁 ∈ ℕ → ∀𝑔𝐴 (𝑔‘1) ∈ (1...(𝑁 + 1)))
29 rabid2 3439 . . . . 5 (𝐴 = {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))} ↔ ∀𝑔𝐴 (𝑔‘1) ∈ (1...(𝑁 + 1)))
3028, 29sylibr 234 . . . 4 (𝑁 ∈ ℕ → 𝐴 = {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))})
3130fveq2d 6862 . . 3 (𝑁 ∈ ℕ → (♯‘𝐴) = (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}))
326, 12, 313eqtrd 2768 . 2 (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}))
33 elfz1end 13515 . . . 4 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
341, 33sylib 218 . . 3 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
35 eleq1 2816 . . . . . . 7 (𝑥 = 1 → (𝑥 ∈ (1...(𝑁 + 1)) ↔ 1 ∈ (1...(𝑁 + 1))))
36 oveq2 7395 . . . . . . . . . . . . 13 (𝑥 = 1 → (1...𝑥) = (1...1))
37 1z 12563 . . . . . . . . . . . . . 14 1 ∈ ℤ
38 fzsn 13527 . . . . . . . . . . . . . 14 (1 ∈ ℤ → (1...1) = {1})
3937, 38ax-mp 5 . . . . . . . . . . . . 13 (1...1) = {1}
4036, 39eqtrdi 2780 . . . . . . . . . . . 12 (𝑥 = 1 → (1...𝑥) = {1})
4140eleq2d 2814 . . . . . . . . . . 11 (𝑥 = 1 → ((𝑔‘1) ∈ (1...𝑥) ↔ (𝑔‘1) ∈ {1}))
42 fvex 6871 . . . . . . . . . . . 12 (𝑔‘1) ∈ V
4342elsn 4604 . . . . . . . . . . 11 ((𝑔‘1) ∈ {1} ↔ (𝑔‘1) = 1)
4441, 43bitrdi 287 . . . . . . . . . 10 (𝑥 = 1 → ((𝑔‘1) ∈ (1...𝑥) ↔ (𝑔‘1) = 1))
4544rabbidv 3413 . . . . . . . . 9 (𝑥 = 1 → {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)} = {𝑔𝐴 ∣ (𝑔‘1) = 1})
4645fveq2d 6862 . . . . . . . 8 (𝑥 = 1 → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = (♯‘{𝑔𝐴 ∣ (𝑔‘1) = 1}))
47 oveq1 7394 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 − 1) = (1 − 1))
48 1m1e0 12258 . . . . . . . . . 10 (1 − 1) = 0
4947, 48eqtrdi 2780 . . . . . . . . 9 (𝑥 = 1 → (𝑥 − 1) = 0)
5049oveq1d 7402 . . . . . . . 8 (𝑥 = 1 → ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = (0 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
5146, 50eqeq12d 2745 . . . . . . 7 (𝑥 = 1 → ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) ↔ (♯‘{𝑔𝐴 ∣ (𝑔‘1) = 1}) = (0 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))
5235, 51imbi12d 344 . . . . . 6 (𝑥 = 1 → ((𝑥 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) ↔ (1 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) = 1}) = (0 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
5352imbi2d 340 . . . . 5 (𝑥 = 1 → ((𝑁 ∈ ℕ → (𝑥 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))) ↔ (𝑁 ∈ ℕ → (1 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) = 1}) = (0 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))))
54 eleq1 2816 . . . . . . 7 (𝑥 = 𝑚 → (𝑥 ∈ (1...(𝑁 + 1)) ↔ 𝑚 ∈ (1...(𝑁 + 1))))
55 oveq2 7395 . . . . . . . . . . 11 (𝑥 = 𝑚 → (1...𝑥) = (1...𝑚))
5655eleq2d 2814 . . . . . . . . . 10 (𝑥 = 𝑚 → ((𝑔‘1) ∈ (1...𝑥) ↔ (𝑔‘1) ∈ (1...𝑚)))
5756rabbidv 3413 . . . . . . . . 9 (𝑥 = 𝑚 → {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)} = {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)})
5857fveq2d 6862 . . . . . . . 8 (𝑥 = 𝑚 → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}))
59 oveq1 7394 . . . . . . . . 9 (𝑥 = 𝑚 → (𝑥 − 1) = (𝑚 − 1))
6059oveq1d 7402 . . . . . . . 8 (𝑥 = 𝑚 → ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
6158, 60eqeq12d 2745 . . . . . . 7 (𝑥 = 𝑚 → ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) ↔ (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))
6254, 61imbi12d 344 . . . . . 6 (𝑥 = 𝑚 → ((𝑥 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) ↔ (𝑚 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
6362imbi2d 340 . . . . 5 (𝑥 = 𝑚 → ((𝑁 ∈ ℕ → (𝑥 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))) ↔ (𝑁 ∈ ℕ → (𝑚 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))))
64 eleq1 2816 . . . . . . 7 (𝑥 = (𝑚 + 1) → (𝑥 ∈ (1...(𝑁 + 1)) ↔ (𝑚 + 1) ∈ (1...(𝑁 + 1))))
65 oveq2 7395 . . . . . . . . . . 11 (𝑥 = (𝑚 + 1) → (1...𝑥) = (1...(𝑚 + 1)))
6665eleq2d 2814 . . . . . . . . . 10 (𝑥 = (𝑚 + 1) → ((𝑔‘1) ∈ (1...𝑥) ↔ (𝑔‘1) ∈ (1...(𝑚 + 1))))
6766rabbidv 3413 . . . . . . . . 9 (𝑥 = (𝑚 + 1) → {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)} = {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))})
6867fveq2d 6862 . . . . . . . 8 (𝑥 = (𝑚 + 1) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}))
69 oveq1 7394 . . . . . . . . 9 (𝑥 = (𝑚 + 1) → (𝑥 − 1) = ((𝑚 + 1) − 1))
7069oveq1d 7402 . . . . . . . 8 (𝑥 = (𝑚 + 1) → ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
7168, 70eqeq12d 2745 . . . . . . 7 (𝑥 = (𝑚 + 1) → ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) ↔ (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))
7264, 71imbi12d 344 . . . . . 6 (𝑥 = (𝑚 + 1) → ((𝑥 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) ↔ ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
7372imbi2d 340 . . . . 5 (𝑥 = (𝑚 + 1) → ((𝑁 ∈ ℕ → (𝑥 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))) ↔ (𝑁 ∈ ℕ → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))))
74 eleq1 2816 . . . . . . 7 (𝑥 = (𝑁 + 1) → (𝑥 ∈ (1...(𝑁 + 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1))))
75 oveq2 7395 . . . . . . . . . . 11 (𝑥 = (𝑁 + 1) → (1...𝑥) = (1...(𝑁 + 1)))
7675eleq2d 2814 . . . . . . . . . 10 (𝑥 = (𝑁 + 1) → ((𝑔‘1) ∈ (1...𝑥) ↔ (𝑔‘1) ∈ (1...(𝑁 + 1))))
7776rabbidv 3413 . . . . . . . . 9 (𝑥 = (𝑁 + 1) → {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)} = {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))})
7877fveq2d 6862 . . . . . . . 8 (𝑥 = (𝑁 + 1) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}))
79 oveq1 7394 . . . . . . . . 9 (𝑥 = (𝑁 + 1) → (𝑥 − 1) = ((𝑁 + 1) − 1))
8079oveq1d 7402 . . . . . . . 8 (𝑥 = (𝑁 + 1) → ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = (((𝑁 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
8178, 80eqeq12d 2745 . . . . . . 7 (𝑥 = (𝑁 + 1) → ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) ↔ (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}) = (((𝑁 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))
8274, 81imbi12d 344 . . . . . 6 (𝑥 = (𝑁 + 1) → ((𝑥 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) ↔ ((𝑁 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}) = (((𝑁 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
8382imbi2d 340 . . . . 5 (𝑥 = (𝑁 + 1) → ((𝑁 ∈ ℕ → (𝑥 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑥)}) = ((𝑥 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))) ↔ (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}) = (((𝑁 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))))
84 hash0 14332 . . . . . . 7 (♯‘∅) = 0
85 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑦 = 1 → (𝑓𝑦) = (𝑓‘1))
86 id 22 . . . . . . . . . . . . . . . 16 (𝑦 = 1 → 𝑦 = 1)
8785, 86neeq12d 2986 . . . . . . . . . . . . . . 15 (𝑦 = 1 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑓‘1) ≠ 1))
8887rspcv 3584 . . . . . . . . . . . . . 14 (1 ∈ (1...(𝑁 + 1)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦 → (𝑓‘1) ≠ 1))
8916, 88syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦 → (𝑓‘1) ≠ 1))
9089adantld 490 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦) → (𝑓‘1) ≠ 1))
9190ss2abdv 4029 . . . . . . . . . . 11 (𝑁 ∈ ℕ → {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)} ⊆ {𝑓 ∣ (𝑓‘1) ≠ 1})
92 df-ne 2926 . . . . . . . . . . . . 13 ((𝑔‘1) ≠ 1 ↔ ¬ (𝑔‘1) = 1)
9323neeq1d 2984 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → ((𝑔‘1) ≠ 1 ↔ (𝑓‘1) ≠ 1))
9492, 93bitr3id 285 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (¬ (𝑔‘1) = 1 ↔ (𝑓‘1) ≠ 1))
9594cbvabv 2799 . . . . . . . . . . 11 {𝑔 ∣ ¬ (𝑔‘1) = 1} = {𝑓 ∣ (𝑓‘1) ≠ 1}
9691, 10, 953sstr4g 4000 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝐴 ⊆ {𝑔 ∣ ¬ (𝑔‘1) = 1})
97 ssabral 4028 . . . . . . . . . 10 (𝐴 ⊆ {𝑔 ∣ ¬ (𝑔‘1) = 1} ↔ ∀𝑔𝐴 ¬ (𝑔‘1) = 1)
9896, 97sylib 218 . . . . . . . . 9 (𝑁 ∈ ℕ → ∀𝑔𝐴 ¬ (𝑔‘1) = 1)
99 rabeq0 4351 . . . . . . . . 9 ({𝑔𝐴 ∣ (𝑔‘1) = 1} = ∅ ↔ ∀𝑔𝐴 ¬ (𝑔‘1) = 1)
10098, 99sylibr 234 . . . . . . . 8 (𝑁 ∈ ℕ → {𝑔𝐴 ∣ (𝑔‘1) = 1} = ∅)
101100fveq2d 6862 . . . . . . 7 (𝑁 ∈ ℕ → (♯‘{𝑔𝐴 ∣ (𝑔‘1) = 1}) = (♯‘∅))
102 nnnn0 12449 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1033, 4subfacf 35162 . . . . . . . . . . . 12 𝑆:ℕ0⟶ℕ0
104103ffvelcdmi 7055 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
105102, 104syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
106 nnm1nn0 12483 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
107103ffvelcdmi 7055 . . . . . . . . . . 11 ((𝑁 − 1) ∈ ℕ0 → (𝑆‘(𝑁 − 1)) ∈ ℕ0)
108106, 107syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑆‘(𝑁 − 1)) ∈ ℕ0)
109105, 108nn0addcld 12507 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑆𝑁) + (𝑆‘(𝑁 − 1))) ∈ ℕ0)
110109nn0cnd 12505 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑆𝑁) + (𝑆‘(𝑁 − 1))) ∈ ℂ)
111110mul02d 11372 . . . . . . 7 (𝑁 ∈ ℕ → (0 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = 0)
11284, 101, 1113eqtr4a 2790 . . . . . 6 (𝑁 ∈ ℕ → (♯‘{𝑔𝐴 ∣ (𝑔‘1) = 1}) = (0 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
113112a1d 25 . . . . 5 (𝑁 ∈ ℕ → (1 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) = 1}) = (0 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))
114 simplr 768 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → 𝑚 ∈ ℕ)
115114, 13eleqtrdi 2838 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → 𝑚 ∈ (ℤ‘1))
116 peano2fzr 13498 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ‘1) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → 𝑚 ∈ (1...(𝑁 + 1)))
117115, 116sylancom 588 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → 𝑚 ∈ (1...(𝑁 + 1)))
118117ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → 𝑚 ∈ (1...(𝑁 + 1))))
119118imim1d 82 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
120 oveq1 7394 . . . . . . . . . . 11 ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) → ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})) = (((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})))
121 elfzp1 13535 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘1) → ((𝑔‘1) ∈ (1...(𝑚 + 1)) ↔ ((𝑔‘1) ∈ (1...𝑚) ∨ (𝑔‘1) = (𝑚 + 1))))
122115, 121syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ((𝑔‘1) ∈ (1...(𝑚 + 1)) ↔ ((𝑔‘1) ∈ (1...𝑚) ∨ (𝑔‘1) = (𝑚 + 1))))
123122rabbidv 3413 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))} = {𝑔𝐴 ∣ ((𝑔‘1) ∈ (1...𝑚) ∨ (𝑔‘1) = (𝑚 + 1))})
124 unrab 4278 . . . . . . . . . . . . . . 15 ({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∪ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}) = {𝑔𝐴 ∣ ((𝑔‘1) ∈ (1...𝑚) ∨ (𝑔‘1) = (𝑚 + 1))}
125123, 124eqtr4di 2782 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))} = ({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∪ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}))
126125fveq2d 6862 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (♯‘({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∪ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})))
127 fzfi 13937 . . . . . . . . . . . . . . . . 17 (1...(𝑁 + 1)) ∈ Fin
128 deranglem 35153 . . . . . . . . . . . . . . . . 17 ((1...(𝑁 + 1)) ∈ Fin → {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)} ∈ Fin)
129127, 128ax-mp 5 . . . . . . . . . . . . . . . 16 {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)} ∈ Fin
13010, 129eqeltri 2824 . . . . . . . . . . . . . . 15 𝐴 ∈ Fin
131 ssrab2 4043 . . . . . . . . . . . . . . 15 {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ⊆ 𝐴
132 ssfi 9137 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ⊆ 𝐴) → {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∈ Fin)
133130, 131, 132mp2an 692 . . . . . . . . . . . . . 14 {𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∈ Fin
134 ssrab2 4043 . . . . . . . . . . . . . . 15 {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)} ⊆ 𝐴
135 ssfi 9137 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)} ⊆ 𝐴) → {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)} ∈ Fin)
136130, 134, 135mp2an 692 . . . . . . . . . . . . . 14 {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)} ∈ Fin
137 inrab 4279 . . . . . . . . . . . . . . 15 ({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∩ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}) = {𝑔𝐴 ∣ ((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) = (𝑚 + 1))}
138 fzp1disj 13544 . . . . . . . . . . . . . . . . . 18 ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅
13942elsn 4604 . . . . . . . . . . . . . . . . . . . 20 ((𝑔‘1) ∈ {(𝑚 + 1)} ↔ (𝑔‘1) = (𝑚 + 1))
140 inelcm 4428 . . . . . . . . . . . . . . . . . . . 20 (((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) ∈ {(𝑚 + 1)}) → ((1...𝑚) ∩ {(𝑚 + 1)}) ≠ ∅)
141139, 140sylan2br 595 . . . . . . . . . . . . . . . . . . 19 (((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) = (𝑚 + 1)) → ((1...𝑚) ∩ {(𝑚 + 1)}) ≠ ∅)
142141necon2bi 2955 . . . . . . . . . . . . . . . . . 18 (((1...𝑚) ∩ {(𝑚 + 1)}) = ∅ → ¬ ((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) = (𝑚 + 1)))
143138, 142ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ ((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) = (𝑚 + 1))
144143rgenw 3048 . . . . . . . . . . . . . . . 16 𝑔𝐴 ¬ ((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) = (𝑚 + 1))
145 rabeq0 4351 . . . . . . . . . . . . . . . 16 ({𝑔𝐴 ∣ ((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) = (𝑚 + 1))} = ∅ ↔ ∀𝑔𝐴 ¬ ((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) = (𝑚 + 1)))
146144, 145mpbir 231 . . . . . . . . . . . . . . 15 {𝑔𝐴 ∣ ((𝑔‘1) ∈ (1...𝑚) ∧ (𝑔‘1) = (𝑚 + 1))} = ∅
147137, 146eqtri 2752 . . . . . . . . . . . . . 14 ({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∩ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}) = ∅
148 hashun 14347 . . . . . . . . . . . . . 14 (({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∈ Fin ∧ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)} ∈ Fin ∧ ({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∩ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}) = ∅) → (♯‘({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∪ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})) = ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})))
149133, 136, 147, 148mp3an 1463 . . . . . . . . . . . . 13 (♯‘({𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)} ∪ {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})) = ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}))
150126, 149eqtrdi 2780 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})))
151 nncn 12194 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
152151ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → 𝑚 ∈ ℂ)
153 ax-1cn 11126 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
154153a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
155152, 154, 154addsubd 11554 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ((𝑚 + 1) − 1) = ((𝑚 − 1) + 1))
156155oveq1d 7402 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = (((𝑚 − 1) + 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
157 subcl 11420 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑚 − 1) ∈ ℂ)
158152, 153, 157sylancl 586 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (𝑚 − 1) ∈ ℂ)
159109ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ((𝑆𝑁) + (𝑆‘(𝑁 − 1))) ∈ ℕ0)
160159nn0cnd 12505 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ((𝑆𝑁) + (𝑆‘(𝑁 − 1))) ∈ ℂ)
161158, 154, 160adddird 11199 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (((𝑚 − 1) + 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = (((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) + (1 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))
162160mullidd 11192 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (1 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))
163 exmidne 2935 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔‘(𝑚 + 1)) = 1 ∨ (𝑔‘(𝑚 + 1)) ≠ 1)
164 orcom 870 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔‘(𝑚 + 1)) = 1 ∨ (𝑔‘(𝑚 + 1)) ≠ 1) ↔ ((𝑔‘(𝑚 + 1)) ≠ 1 ∨ (𝑔‘(𝑚 + 1)) = 1))
165163, 164mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔‘(𝑚 + 1)) ≠ 1 ∨ (𝑔‘(𝑚 + 1)) = 1)
166165biantru 529 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔‘1) = (𝑚 + 1) ↔ ((𝑔‘1) = (𝑚 + 1) ∧ ((𝑔‘(𝑚 + 1)) ≠ 1 ∨ (𝑔‘(𝑚 + 1)) = 1)))
167 andi 1009 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔‘1) = (𝑚 + 1) ∧ ((𝑔‘(𝑚 + 1)) ≠ 1 ∨ (𝑔‘(𝑚 + 1)) = 1)) ↔ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∨ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)))
168166, 167bitri 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑔‘1) = (𝑚 + 1) ↔ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∨ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)))
169168rabbii 3411 . . . . . . . . . . . . . . . . . . 19 {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)} = {𝑔𝐴 ∣ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∨ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))}
170 unrab 4278 . . . . . . . . . . . . . . . . . . 19 ({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∪ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)}) = {𝑔𝐴 ∣ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∨ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))}
171169, 170eqtr4i 2755 . . . . . . . . . . . . . . . . . 18 {𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)} = ({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∪ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)})
172171fveq2i 6861 . . . . . . . . . . . . . . . . 17 (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}) = (♯‘({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∪ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)}))
173 ssrab2 4043 . . . . . . . . . . . . . . . . . . 19 {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ⊆ 𝐴
174 ssfi 9137 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Fin ∧ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ⊆ 𝐴) → {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∈ Fin)
175130, 173, 174mp2an 692 . . . . . . . . . . . . . . . . . 18 {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∈ Fin
176 ssrab2 4043 . . . . . . . . . . . . . . . . . . 19 {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)} ⊆ 𝐴
177 ssfi 9137 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Fin ∧ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)} ⊆ 𝐴) → {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)} ∈ Fin)
178130, 176, 177mp2an 692 . . . . . . . . . . . . . . . . . 18 {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)} ∈ Fin
179 inrab 4279 . . . . . . . . . . . . . . . . . . 19 ({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∩ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)}) = {𝑔𝐴 ∣ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∧ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))}
180 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1) → (𝑔‘(𝑚 + 1)) = 1)
181180necon3ai 2950 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔‘(𝑚 + 1)) ≠ 1 → ¬ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))
182181adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) → ¬ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))
183 imnan 399 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) → ¬ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)) ↔ ¬ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∧ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)))
184182, 183mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 ¬ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∧ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))
185184rgenw 3048 . . . . . . . . . . . . . . . . . . . 20 𝑔𝐴 ¬ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∧ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))
186 rabeq0 4351 . . . . . . . . . . . . . . . . . . . 20 ({𝑔𝐴 ∣ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∧ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))} = ∅ ↔ ∀𝑔𝐴 ¬ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∧ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)))
187185, 186mpbir 231 . . . . . . . . . . . . . . . . . . 19 {𝑔𝐴 ∣ (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ∧ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1))} = ∅
188179, 187eqtri 2752 . . . . . . . . . . . . . . . . . 18 ({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∩ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)}) = ∅
189 hashun 14347 . . . . . . . . . . . . . . . . . 18 (({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∈ Fin ∧ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)} ∈ Fin ∧ ({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∩ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)}) = ∅) → (♯‘({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∪ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)})) = ((♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)}) + (♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)})))
190175, 178, 188, 189mp3an 1463 . . . . . . . . . . . . . . . . 17 (♯‘({𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} ∪ {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)})) = ((♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)}) + (♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)}))
191172, 190eqtri 2752 . . . . . . . . . . . . . . . 16 (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}) = ((♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)}) + (♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)}))
192 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → 𝑁 ∈ ℕ)
193 nnne0 12220 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
194 0p1e1 12303 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 + 1) = 1
195194eqeq2i 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 + 1) = (0 + 1) ↔ (𝑚 + 1) = 1)
196 0cn 11166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℂ
197 addcan2 11359 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚 ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) = (0 + 1) ↔ 𝑚 = 0))
198196, 153, 197mp3an23 1455 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℂ → ((𝑚 + 1) = (0 + 1) ↔ 𝑚 = 0))
199151, 198syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ → ((𝑚 + 1) = (0 + 1) ↔ 𝑚 = 0))
200195, 199bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → ((𝑚 + 1) = 1 ↔ 𝑚 = 0))
201200necon3bbid 2962 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ → (¬ (𝑚 + 1) = 1 ↔ 𝑚 ≠ 0))
202193, 201mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → ¬ (𝑚 + 1) = 1)
203202ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ¬ (𝑚 + 1) = 1)
20414adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑁 + 1) ∈ (ℤ‘1))
205 elfzp12 13564 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 + 1) ∈ (ℤ‘1) → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) ↔ ((𝑚 + 1) = 1 ∨ (𝑚 + 1) ∈ ((1 + 1)...(𝑁 + 1)))))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) ↔ ((𝑚 + 1) = 1 ∨ (𝑚 + 1) ∈ ((1 + 1)...(𝑁 + 1)))))
207206biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ((𝑚 + 1) = 1 ∨ (𝑚 + 1) ∈ ((1 + 1)...(𝑁 + 1))))
208207ord 864 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (¬ (𝑚 + 1) = 1 → (𝑚 + 1) ∈ ((1 + 1)...(𝑁 + 1))))
209203, 208mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (𝑚 + 1) ∈ ((1 + 1)...(𝑁 + 1)))
210 df-2 12249 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
211210oveq1i 7397 . . . . . . . . . . . . . . . . . . 19 (2...(𝑁 + 1)) = ((1 + 1)...(𝑁 + 1))
212209, 211eleqtrrdi 2839 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (𝑚 + 1) ∈ (2...(𝑁 + 1)))
213 ovex 7420 . . . . . . . . . . . . . . . . . 18 (𝑚 + 1) ∈ V
214 eqid 2729 . . . . . . . . . . . . . . . . . 18 ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)}) = ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})
215 fveq1 6857 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = → (𝑔‘1) = (‘1))
216215eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = → ((𝑔‘1) = (𝑚 + 1) ↔ (‘1) = (𝑚 + 1)))
217 fveq1 6857 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = → (𝑔‘(𝑚 + 1)) = (‘(𝑚 + 1)))
218217neeq1d 2984 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = → ((𝑔‘(𝑚 + 1)) ≠ 1 ↔ (‘(𝑚 + 1)) ≠ 1))
219216, 218anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑔 = → (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1) ↔ ((‘1) = (𝑚 + 1) ∧ (‘(𝑚 + 1)) ≠ 1)))
220219cbvrabv 3416 . . . . . . . . . . . . . . . . . 18 {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)} = {𝐴 ∣ ((‘1) = (𝑚 + 1) ∧ (‘(𝑚 + 1)) ≠ 1)}
221 eqid 2729 . . . . . . . . . . . . . . . . . 18 (( I ↾ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})) ∪ {⟨1, (𝑚 + 1)⟩, ⟨(𝑚 + 1), 1⟩}) = (( I ↾ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})) ∪ {⟨1, (𝑚 + 1)⟩, ⟨(𝑚 + 1), 1⟩})
222 f1oeq1 6788 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑔:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ 𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))))
223 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑔𝑧) = (𝑔𝑦))
224 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦𝑧 = 𝑦)
225223, 224neeq12d 2986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((𝑔𝑧) ≠ 𝑧 ↔ (𝑔𝑦) ≠ 𝑦))
226225cbvralvw 3215 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧 ∈ (2...(𝑁 + 1))(𝑔𝑧) ≠ 𝑧 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑔𝑦) ≠ 𝑦)
227 fveq1 6857 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = 𝑓 → (𝑔𝑦) = (𝑓𝑦))
228227neeq1d 2984 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = 𝑓 → ((𝑔𝑦) ≠ 𝑦 ↔ (𝑓𝑦) ≠ 𝑦))
229228ralbidv 3156 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑔𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦))
230226, 229bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (∀𝑧 ∈ (2...(𝑁 + 1))(𝑔𝑧) ≠ 𝑧 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦))
231222, 230anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑔:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑧 ∈ (2...(𝑁 + 1))(𝑔𝑧) ≠ 𝑧) ↔ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)))
232231cbvabv 2799 . . . . . . . . . . . . . . . . . 18 {𝑔 ∣ (𝑔:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑧 ∈ (2...(𝑁 + 1))(𝑔𝑧) ≠ 𝑧)} = {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
2333, 4, 10, 192, 212, 213, 214, 220, 221, 232subfacp1lem5 35171 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)}) = (𝑆𝑁))
234217eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = → ((𝑔‘(𝑚 + 1)) = 1 ↔ (‘(𝑚 + 1)) = 1))
235216, 234anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑔 = → (((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1) ↔ ((‘1) = (𝑚 + 1) ∧ (‘(𝑚 + 1)) = 1)))
236235cbvrabv 3416 . . . . . . . . . . . . . . . . . 18 {𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)} = {𝐴 ∣ ((‘1) = (𝑚 + 1) ∧ (‘(𝑚 + 1)) = 1)}
237 f1oeq1 6788 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑔:((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})–1-1-onto→((2...(𝑁 + 1)) ∖ {(𝑚 + 1)}) ↔ 𝑓:((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})–1-1-onto→((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})))
238225cbvralvw 3215 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑔𝑧) ≠ 𝑧 ↔ ∀𝑦 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑔𝑦) ≠ 𝑦)
239228ralbidv 3156 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (∀𝑦 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑔𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑓𝑦) ≠ 𝑦))
240238, 239bitrid 283 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (∀𝑧 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑔𝑧) ≠ 𝑧 ↔ ∀𝑦 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑓𝑦) ≠ 𝑦))
241237, 240anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑔:((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})–1-1-onto→((2...(𝑁 + 1)) ∖ {(𝑚 + 1)}) ∧ ∀𝑧 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑔𝑧) ≠ 𝑧) ↔ (𝑓:((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})–1-1-onto→((2...(𝑁 + 1)) ∖ {(𝑚 + 1)}) ∧ ∀𝑦 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑓𝑦) ≠ 𝑦)))
242241cbvabv 2799 . . . . . . . . . . . . . . . . . 18 {𝑔 ∣ (𝑔:((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})–1-1-onto→((2...(𝑁 + 1)) ∖ {(𝑚 + 1)}) ∧ ∀𝑧 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑔𝑧) ≠ 𝑧)} = {𝑓 ∣ (𝑓:((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})–1-1-onto→((2...(𝑁 + 1)) ∖ {(𝑚 + 1)}) ∧ ∀𝑦 ∈ ((2...(𝑁 + 1)) ∖ {(𝑚 + 1)})(𝑓𝑦) ≠ 𝑦)}
2433, 4, 10, 192, 212, 213, 214, 236, 242subfacp1lem3 35169 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)}) = (𝑆‘(𝑁 − 1)))
244233, 243oveq12d 7405 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ((♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) ≠ 1)}) + (♯‘{𝑔𝐴 ∣ ((𝑔‘1) = (𝑚 + 1) ∧ (𝑔‘(𝑚 + 1)) = 1)})) = ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))
245191, 244eqtrid 2776 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}) = ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))
246162, 245eqtr4d 2767 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (1 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}))
247246oveq2d 7403 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) + (1 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) = (((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})))
248156, 161, 2473eqtrd 2768 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = (((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})))
249150, 248eqeq12d 2745 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) ↔ ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)})) = (((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) + (♯‘{𝑔𝐴 ∣ (𝑔‘1) = (𝑚 + 1)}))))
250120, 249imbitrrid 246 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(𝑁 + 1))) → ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))
251250ex 412 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → ((♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
252251a2d 29 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
253119, 252syld 47 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
254253expcom 413 . . . . . 6 (𝑚 ∈ ℕ → (𝑁 ∈ ℕ → ((𝑚 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))) → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))))
255254a2d 29 . . . . 5 (𝑚 ∈ ℕ → ((𝑁 ∈ ℕ → (𝑚 ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...𝑚)}) = ((𝑚 − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))) → (𝑁 ∈ ℕ → ((𝑚 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑚 + 1))}) = (((𝑚 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))))
25653, 63, 73, 83, 113, 255nnind 12204 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}) = (((𝑁 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))))
2571, 256mpcom 38 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ (1...(𝑁 + 1)) → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}) = (((𝑁 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1))))))
25834, 257mpd 15 . 2 (𝑁 ∈ ℕ → (♯‘{𝑔𝐴 ∣ (𝑔‘1) ∈ (1...(𝑁 + 1))}) = (((𝑁 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
259 nncn 12194 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
260 pncan 11427 . . . 4 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
261259, 153, 260sylancl 586 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
262261oveq1d 7402 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))) = (𝑁 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
26332, 258, 2623eqtrd 2768 1 (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆𝑁) + (𝑆‘(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  {crab 3405  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  {cpr 4591  cop 4595  cmpt 5188   I cid 5532  cres 5640  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  subfacp1  35173
  Copyright terms: Public domain W3C validator