| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version | ||
| Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | nne 2929 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: neldifsn 4756 frxp2 8123 poxp3 8129 frxp3 8130 ac5b 10431 0nnn 12222 1nuz2 12883 dprd2da 19974 dvlog 26560 legso 28526 hleqnid 28535 umgrnloop0 29036 usgrnloop0ALT 29132 nfrgr2v 30201 0ngrp 30440 neldifpr1 32462 neldifpr2 32463 assafld 33633 signswch 34552 signstfvneq0 34563 linedegen 36131 irrdiff 37314 prtlem400 38863 padd01 39805 padd02 39806 fiiuncl 45059 gpg5nbgrvtx03starlem1 48059 gpg5nbgrvtx03starlem2 48060 gpg5nbgrvtx03starlem3 48061 gpg5nbgrvtx13starlem1 48062 gpg5nbgrvtx13starlem2 48063 gpg5nbgrvtx13starlem3 48064 rmsupp0 48356 lcoc0 48411 |
| Copyright terms: Public domain | W3C validator |