| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version | ||
| Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | nne 2932 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: neldifsn 4744 frxp2 8074 poxp3 8080 frxp3 8081 ac5b 10366 0nnn 12158 1nuz2 12819 dprd2da 19954 dvlog 26585 legso 28575 hleqnid 28584 umgrnloop0 29085 usgrnloop0ALT 29181 nfrgr2v 30247 0ngrp 30486 neldifpr1 32508 neldifpr2 32509 assafld 33645 signswch 34569 signstfvneq0 34580 linedegen 36176 irrdiff 37359 prtlem400 38908 padd01 39849 padd02 39850 fiiuncl 45101 gpg5nbgrvtx03starlem1 48098 gpg5nbgrvtx03starlem2 48099 gpg5nbgrvtx03starlem3 48100 gpg5nbgrvtx13starlem1 48101 gpg5nbgrvtx13starlem2 48102 gpg5nbgrvtx13starlem3 48103 gpg5edgnedg 48160 rmsupp0 48398 lcoc0 48453 |
| Copyright terms: Public domain | W3C validator |