| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version | ||
| Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | nne 2929 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: neldifsn 4746 frxp2 8084 poxp3 8090 frxp3 8091 ac5b 10391 0nnn 12182 1nuz2 12843 dprd2da 19941 dvlog 26576 legso 28562 hleqnid 28571 umgrnloop0 29072 usgrnloop0ALT 29168 nfrgr2v 30234 0ngrp 30473 neldifpr1 32495 neldifpr2 32496 assafld 33609 signswch 34528 signstfvneq0 34539 linedegen 36116 irrdiff 37299 prtlem400 38848 padd01 39790 padd02 39791 fiiuncl 45043 gpg5nbgrvtx03starlem1 48053 gpg5nbgrvtx03starlem2 48054 gpg5nbgrvtx03starlem3 48055 gpg5nbgrvtx13starlem1 48056 gpg5nbgrvtx13starlem2 48057 gpg5nbgrvtx13starlem3 48058 gpg5edgnedg 48115 rmsupp0 48353 lcoc0 48408 |
| Copyright terms: Public domain | W3C validator |