Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version |
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | nne 2946 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: neldifsn 4722 ac5b 10165 0nnn 11939 1nuz2 12593 dprd2da 19560 dvlog 25711 legso 26864 hleqnid 26873 umgrnloop0 27382 usgrnloop0ALT 27475 nfrgr2v 28537 0ngrp 28774 neldifpr1 30782 neldifpr2 30783 signswch 32440 signstfvneq0 32451 frxp2 33718 poxp3 33723 frxp3 33724 linedegen 34372 irrdiff 35424 prtlem400 36811 padd01 37752 padd02 37753 fiiuncl 42502 rmsupp0 45592 lcoc0 45651 |
Copyright terms: Public domain | W3C validator |