Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version |
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | nne 2945 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2729 df-ne 2942 |
This theorem is referenced by: neldifsn 4737 ac5b 10307 0nnn 12082 1nuz2 12737 dprd2da 19713 dvlog 25878 legso 27069 hleqnid 27078 umgrnloop0 27588 usgrnloop0ALT 27681 nfrgr2v 28745 0ngrp 28982 neldifpr1 30989 neldifpr2 30990 signswch 32646 signstfvneq0 32657 frxp2 33889 poxp3 33894 frxp3 33895 linedegen 34503 irrdiff 35553 prtlem400 37088 padd01 38030 padd02 38031 fiiuncl 42834 rmsupp0 45956 lcoc0 46015 |
Copyright terms: Public domain | W3C validator |