![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version |
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | nne 2942 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ne 2939 |
This theorem is referenced by: neldifsn 4797 frxp2 8168 poxp3 8174 frxp3 8175 ac5b 10516 0nnn 12300 1nuz2 12964 dprd2da 20077 dvlog 26708 legso 28622 hleqnid 28631 umgrnloop0 29141 usgrnloop0ALT 29237 nfrgr2v 30301 0ngrp 30540 neldifpr1 32559 neldifpr2 32560 assafld 33665 signswch 34555 signstfvneq0 34566 linedegen 36125 irrdiff 37309 prtlem400 38852 padd01 39794 padd02 39795 fiiuncl 45005 gpg5nbgrvtx03starlem1 47959 gpg5nbgrvtx03starlem2 47960 gpg5nbgrvtx03starlem3 47961 gpg5nbgrvtx13starlem1 47962 gpg5nbgrvtx13starlem2 47963 gpg5nbgrvtx13starlem3 47964 rmsupp0 48213 lcoc0 48268 |
Copyright terms: Public domain | W3C validator |