| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version | ||
| Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | nne 2936 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ne 2933 |
| This theorem is referenced by: neldifsn 4768 frxp2 8143 poxp3 8149 frxp3 8150 ac5b 10492 0nnn 12276 1nuz2 12940 dprd2da 20025 dvlog 26612 legso 28578 hleqnid 28587 umgrnloop0 29088 usgrnloop0ALT 29184 nfrgr2v 30253 0ngrp 30492 neldifpr1 32514 neldifpr2 32515 assafld 33677 signswch 34593 signstfvneq0 34604 linedegen 36161 irrdiff 37344 prtlem400 38888 padd01 39830 padd02 39831 fiiuncl 45089 gpg5nbgrvtx03starlem1 48070 gpg5nbgrvtx03starlem2 48071 gpg5nbgrvtx03starlem3 48072 gpg5nbgrvtx13starlem1 48073 gpg5nbgrvtx13starlem2 48074 gpg5nbgrvtx13starlem3 48075 rmsupp0 48343 lcoc0 48398 |
| Copyright terms: Public domain | W3C validator |