| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version | ||
| Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | nne 2930 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: neldifsn 4759 frxp2 8126 poxp3 8132 frxp3 8133 ac5b 10438 0nnn 12229 1nuz2 12890 dprd2da 19981 dvlog 26567 legso 28533 hleqnid 28542 umgrnloop0 29043 usgrnloop0ALT 29139 nfrgr2v 30208 0ngrp 30447 neldifpr1 32469 neldifpr2 32470 assafld 33640 signswch 34559 signstfvneq0 34570 linedegen 36138 irrdiff 37321 prtlem400 38870 padd01 39812 padd02 39813 fiiuncl 45066 gpg5nbgrvtx03starlem1 48063 gpg5nbgrvtx03starlem2 48064 gpg5nbgrvtx03starlem3 48065 gpg5nbgrvtx13starlem1 48066 gpg5nbgrvtx13starlem2 48067 gpg5nbgrvtx13starlem3 48068 rmsupp0 48360 lcoc0 48415 |
| Copyright terms: Public domain | W3C validator |