| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version | ||
| Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | nne 2933 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 |
| This theorem is referenced by: neldifsn 4743 frxp2 8080 poxp3 8086 frxp3 8087 ac5b 10376 0nnn 12168 1nuz2 12824 dprd2da 19958 dvlog 26588 legso 28578 hleqnid 28587 umgrnloop0 29089 usgrnloop0ALT 29185 nfrgr2v 30254 0ngrp 30493 neldifpr1 32515 neldifpr2 32516 assafld 33671 signswch 34595 signstfvneq0 34606 linedegen 36208 irrdiff 37391 prtlem400 38989 padd01 39930 padd02 39931 fiiuncl 45186 gpg5nbgrvtx03starlem1 48192 gpg5nbgrvtx03starlem2 48193 gpg5nbgrvtx03starlem3 48194 gpg5nbgrvtx13starlem1 48195 gpg5nbgrvtx13starlem2 48196 gpg5nbgrvtx13starlem3 48197 gpg5edgnedg 48254 rmsupp0 48492 lcoc0 48547 |
| Copyright terms: Public domain | W3C validator |