![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version |
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | nne 2973 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
3 | 1, 2 | mpbir 223 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1601 ≠ wne 2969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-cleq 2770 df-ne 2970 |
This theorem is referenced by: neldifsn 4554 ac5b 9635 0nnn 11411 1nuz2 12071 dprd2da 18828 dvlog 24834 legso 25950 hleqnid 25959 umgrnloop0 26457 usgrnloop0ALT 26551 nfrgr2v 27680 0ngrp 27938 signswch 31238 signstfvneq0 31250 linedegen 32839 prtlem400 35024 padd01 35965 padd02 35966 fiiuncl 40165 rmsupp0 43164 lcoc0 43226 |
Copyright terms: Public domain | W3C validator |