Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version |
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | nne 2947 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: neldifsn 4725 ac5b 10234 0nnn 12009 1nuz2 12664 dprd2da 19645 dvlog 25806 legso 26960 hleqnid 26969 umgrnloop0 27479 usgrnloop0ALT 27572 nfrgr2v 28636 0ngrp 28873 neldifpr1 30881 neldifpr2 30882 signswch 32540 signstfvneq0 32551 frxp2 33791 poxp3 33796 frxp3 33797 linedegen 34445 irrdiff 35497 prtlem400 36884 padd01 37825 padd02 37826 fiiuncl 42613 rmsupp0 45704 lcoc0 45763 |
Copyright terms: Public domain | W3C validator |