![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neirr | Structured version Visualization version GIF version |
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
neirr | ⊢ ¬ 𝐴 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | nne 2950 | . 2 ⊢ (¬ 𝐴 ≠ 𝐴 ↔ 𝐴 = 𝐴) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ 𝐴 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: neldifsn 4817 frxp2 8185 poxp3 8191 frxp3 8192 ac5b 10547 0nnn 12329 1nuz2 12989 dprd2da 20086 dvlog 26711 legso 28625 hleqnid 28634 umgrnloop0 29144 usgrnloop0ALT 29240 nfrgr2v 30304 0ngrp 30543 neldifpr1 32561 neldifpr2 32562 assafld 33650 signswch 34538 signstfvneq0 34549 linedegen 36107 irrdiff 37292 prtlem400 38826 padd01 39768 padd02 39769 fiiuncl 44967 rmsupp0 48093 lcoc0 48151 |
Copyright terms: Public domain | W3C validator |