MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neirr Structured version   Visualization version   GIF version

Theorem neirr 2951
Description: No class is unequal to itself. Inequality is irreflexive. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
neirr ¬ 𝐴𝐴

Proof of Theorem neirr
StepHypRef Expression
1 eqid 2738 . 2 𝐴 = 𝐴
2 nne 2946 . 2 𝐴𝐴𝐴 = 𝐴)
31, 2mpbir 230 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-ne 2943
This theorem is referenced by:  neldifsn  4722  ac5b  10165  0nnn  11939  1nuz2  12593  dprd2da  19560  dvlog  25711  legso  26864  hleqnid  26873  umgrnloop0  27382  usgrnloop0ALT  27475  nfrgr2v  28537  0ngrp  28774  neldifpr1  30782  neldifpr2  30783  signswch  32440  signstfvneq0  32451  frxp2  33718  poxp3  33723  frxp3  33724  linedegen  34372  irrdiff  35424  prtlem400  36811  padd01  37752  padd02  37753  fiiuncl  42502  rmsupp0  45592  lcoc0  45651
  Copyright terms: Public domain W3C validator