Proof of Theorem ax6e2ndeqALT
Step | Hyp | Ref
| Expression |
1 | | ax6e2nd 42067 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
2 | | ax6e2eq 42066 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
3 | 1 | a1d 25 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
4 | | exmid 891 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 ∨ ¬ ∀𝑥 𝑥 = 𝑦) |
5 | | jao 957 |
. . . . 5
⊢
((∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) → ((¬ ∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) → ((∀𝑥 𝑥 = 𝑦 ∨ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))))) |
6 | 5 | 3imp 1109 |
. . . 4
⊢
(((∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) ∧ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) ∧ (∀𝑥 𝑥 = 𝑦 ∨ ¬ ∀𝑥 𝑥 = 𝑦)) → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
7 | 2, 3, 4, 6 | mp3an 1459 |
. . 3
⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
8 | 1, 7 | jaoi 853 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
9 | | hbnae 2432 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
10 | 9 | eximi 1838 |
. . . . . . . 8
⊢
(∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ∃𝑦∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
11 | | nfa1 2150 |
. . . . . . . . 9
⊢
Ⅎ𝑦∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦 |
12 | 11 | 19.9 2201 |
. . . . . . . 8
⊢
(∃𝑦∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
13 | 10, 12 | sylib 217 |
. . . . . . 7
⊢
(∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦) |
14 | | sp 2178 |
. . . . . . 7
⊢
(∀𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢
(∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
16 | | excom 2164 |
. . . . . . 7
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
17 | | nfa1 2150 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∀𝑥 𝑥 = 𝑦 |
18 | 17 | nfn 1861 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
19 | 18 | 19.9 2201 |
. . . . . . . . . 10
⊢
(∃𝑥 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
20 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ≠ 𝑣 → 𝑢 ≠ 𝑣) |
21 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ≠ 𝑣 ∧ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
22 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 = 𝑢) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ≠ 𝑣 ∧ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → 𝑥 = 𝑢) |
24 | | pm13.181 3025 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑢 ∧ 𝑢 ≠ 𝑣) → 𝑥 ≠ 𝑣) |
25 | 24 | ancoms 458 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ≠ 𝑣 ∧ 𝑥 = 𝑢) → 𝑥 ≠ 𝑣) |
26 | 20, 23, 25 | syl2an2r 681 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ≠ 𝑣 ∧ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → 𝑥 ≠ 𝑣) |
27 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) |
28 | 21, 27 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ≠ 𝑣 ∧ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → 𝑦 = 𝑣) |
29 | | neeq2 3006 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑣 → (𝑥 ≠ 𝑦 ↔ 𝑥 ≠ 𝑣)) |
30 | 29 | biimparc 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ≠ 𝑣 ∧ 𝑦 = 𝑣) → 𝑥 ≠ 𝑦) |
31 | 26, 28, 30 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ≠ 𝑣 ∧ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → 𝑥 ≠ 𝑦) |
32 | | df-ne 2943 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
33 | 32 | bicomi 223 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) |
34 | | sp 2178 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) |
35 | 34 | con3i 154 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
36 | 33, 35 | sylbir 234 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
37 | 31, 36 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ≠ 𝑣 ∧ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → ¬ ∀𝑥 𝑥 = 𝑦) |
38 | 37 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑢 ≠ 𝑣 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
39 | 38 | alrimiv 1931 |
. . . . . . . . . . 11
⊢ (𝑢 ≠ 𝑣 → ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
40 | | exim 1837 |
. . . . . . . . . . 11
⊢
(∀𝑥((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . 10
⊢ (𝑢 ≠ 𝑣 → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦)) |
42 | | imbi2 348 |
. . . . . . . . . . 11
⊢
((∃𝑥 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) → ((∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦) ↔ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦))) |
43 | 42 | biimpa 476 |
. . . . . . . . . 10
⊢
(((∃𝑥 ¬
∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) ∧ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥 ¬ ∀𝑥 𝑥 = 𝑦)) → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
44 | 19, 41, 43 | sylancr 586 |
. . . . . . . . 9
⊢ (𝑢 ≠ 𝑣 → (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
45 | 44 | alrimiv 1931 |
. . . . . . . 8
⊢ (𝑢 ≠ 𝑣 → ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
46 | | exim 1837 |
. . . . . . . 8
⊢
(∀𝑦(∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) |
47 | 45, 46 | syl 17 |
. . . . . . 7
⊢ (𝑢 ≠ 𝑣 → (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) |
48 | | imbi1 347 |
. . . . . . . 8
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦) ↔ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦))) |
49 | 48 | biimpar 477 |
. . . . . . 7
⊢
(((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) ∧ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) |
50 | 16, 47, 49 | sylancr 586 |
. . . . . 6
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) |
51 | | pm3.34 762 |
. . . . . 6
⊢
(((∃𝑦 ¬
∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) ∧ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦 ¬ ∀𝑥 𝑥 = 𝑦)) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
52 | 15, 50, 51 | sylancr 586 |
. . . . 5
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦)) |
53 | | orc 863 |
. . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
54 | 53 | imim2i 16 |
. . . . 5
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥 𝑥 = 𝑦) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
55 | 52, 54 | syl 17 |
. . . 4
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
56 | 55 | idiALT 41986 |
. . 3
⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
57 | | id 22 |
. . . . . 6
⊢ (𝑢 = 𝑣 → 𝑢 = 𝑣) |
58 | | ax-1 6 |
. . . . . 6
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑢 = 𝑣)) |
59 | 57, 58 | syl 17 |
. . . . 5
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑢 = 𝑣)) |
60 | | olc 864 |
. . . . . 6
⊢ (𝑢 = 𝑣 → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
61 | 60 | imim2i 16 |
. . . . 5
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑢 = 𝑣) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
62 | 59, 61 | syl 17 |
. . . 4
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
63 | 62 | idiALT 41986 |
. . 3
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
64 | | exmidne 2952 |
. . 3
⊢ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣) |
65 | | jao 957 |
. . . 4
⊢ ((𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) → ((𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) → ((𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))))) |
66 | 65 | 3imp21 1112 |
. . 3
⊢ (((𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) ∧ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) ∧ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣)) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣))) |
67 | 56, 63, 64, 66 | mp3an 1459 |
. 2
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (¬ ∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) |
68 | 8, 67 | impbii 208 |
1
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |