![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashv01gt1 | Structured version Visualization version GIF version |
Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.) |
Ref | Expression |
---|---|
hashv01gt1 | ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnn0pnf 14298 | . 2 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) | |
2 | elnn0 12470 | . . . 4 ⊢ ((♯‘𝑀) ∈ ℕ0 ↔ ((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0)) | |
3 | exmidne 2950 | . . . . . . . 8 ⊢ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1) | |
4 | nngt1ne1 12237 | . . . . . . . . 9 ⊢ ((♯‘𝑀) ∈ ℕ → (1 < (♯‘𝑀) ↔ (♯‘𝑀) ≠ 1)) | |
5 | 4 | orbi2d 914 | . . . . . . . 8 ⊢ ((♯‘𝑀) ∈ ℕ → (((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1))) |
6 | 3, 5 | mpbiri 257 | . . . . . . 7 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
7 | 6 | olcd 872 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))) |
8 | 3orass 1090 | . . . . . 6 ⊢ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))) | |
9 | 7, 8 | sylibr 233 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
10 | 3mix1 1330 | . . . . 5 ⊢ ((♯‘𝑀) = 0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | |
11 | 9, 10 | jaoi 855 | . . . 4 ⊢ (((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
12 | 2, 11 | sylbi 216 | . . 3 ⊢ ((♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
13 | 1re 11210 | . . . . . 6 ⊢ 1 ∈ ℝ | |
14 | ltpnf 13096 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
16 | breq2 5151 | . . . . 5 ⊢ ((♯‘𝑀) = +∞ → (1 < (♯‘𝑀) ↔ 1 < +∞)) | |
17 | 15, 16 | mpbiri 257 | . . . 4 ⊢ ((♯‘𝑀) = +∞ → 1 < (♯‘𝑀)) |
18 | 17 | 3mix3d 1338 | . . 3 ⊢ ((♯‘𝑀) = +∞ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
19 | 12, 18 | jaoi 855 | . 2 ⊢ (((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∨ w3o 1086 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5147 ‘cfv 6540 ℝcr 11105 0cc0 11106 1c1 11107 +∞cpnf 11241 < clt 11244 ℕcn 12208 ℕ0cn0 12468 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-hash 14287 |
This theorem is referenced by: hashge2el2difr 14438 symgvalstruct 19258 symgvalstructOLD 19259 01eq0ringOLD 20298 tgldimor 27742 frgrwopreg 29565 |
Copyright terms: Public domain | W3C validator |