| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashv01gt1 | Structured version Visualization version GIF version | ||
| Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.) |
| Ref | Expression |
|---|---|
| hashv01gt1 | ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf 14283 | . 2 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) | |
| 2 | elnn0 12420 | . . . 4 ⊢ ((♯‘𝑀) ∈ ℕ0 ↔ ((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0)) | |
| 3 | exmidne 2935 | . . . . . . . 8 ⊢ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1) | |
| 4 | nngt1ne1 12191 | . . . . . . . . 9 ⊢ ((♯‘𝑀) ∈ ℕ → (1 < (♯‘𝑀) ↔ (♯‘𝑀) ≠ 1)) | |
| 5 | 4 | orbi2d 915 | . . . . . . . 8 ⊢ ((♯‘𝑀) ∈ ℕ → (((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1))) |
| 6 | 3, 5 | mpbiri 258 | . . . . . . 7 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
| 7 | 6 | olcd 874 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))) |
| 8 | 3orass 1089 | . . . . . 6 ⊢ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))) | |
| 9 | 7, 8 | sylibr 234 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
| 10 | 3mix1 1331 | . . . . 5 ⊢ ((♯‘𝑀) = 0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | |
| 11 | 9, 10 | jaoi 857 | . . . 4 ⊢ (((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
| 12 | 2, 11 | sylbi 217 | . . 3 ⊢ ((♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
| 13 | 1re 11150 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 14 | ltpnf 13056 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
| 16 | breq2 5106 | . . . . 5 ⊢ ((♯‘𝑀) = +∞ → (1 < (♯‘𝑀) ↔ 1 < +∞)) | |
| 17 | 15, 16 | mpbiri 258 | . . . 4 ⊢ ((♯‘𝑀) = +∞ → 1 < (♯‘𝑀)) |
| 18 | 17 | 3mix3d 1339 | . . 3 ⊢ ((♯‘𝑀) = +∞ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
| 19 | 12, 18 | jaoi 857 | . 2 ⊢ (((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 ℝcr 11043 0cc0 11044 1c1 11045 +∞cpnf 11181 < clt 11184 ℕcn 12162 ℕ0cn0 12418 ♯chash 14271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-hash 14272 |
| This theorem is referenced by: hashge2el2difr 14422 symgvalstruct 19311 01eq0ringOLD 20451 tgldimor 28482 frgrwopreg 30302 |
| Copyright terms: Public domain | W3C validator |