MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashv01gt1 Structured version   Visualization version   GIF version

Theorem hashv01gt1 14070
Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.)
Assertion
Ref Expression
hashv01gt1 (𝑀𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))

Proof of Theorem hashv01gt1
StepHypRef Expression
1 hashnn0pnf 14067 . 2 (𝑀𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
2 elnn0 12246 . . . 4 ((♯‘𝑀) ∈ ℕ0 ↔ ((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0))
3 exmidne 2955 . . . . . . . 8 ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1)
4 nngt1ne1 12013 . . . . . . . . 9 ((♯‘𝑀) ∈ ℕ → (1 < (♯‘𝑀) ↔ (♯‘𝑀) ≠ 1))
54orbi2d 913 . . . . . . . 8 ((♯‘𝑀) ∈ ℕ → (((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1)))
63, 5mpbiri 257 . . . . . . 7 ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
76olcd 871 . . . . . 6 ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))))
8 3orass 1089 . . . . . 6 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))))
97, 8sylibr 233 . . . . 5 ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
10 3mix1 1329 . . . . 5 ((♯‘𝑀) = 0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
119, 10jaoi 854 . . . 4 (((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
122, 11sylbi 216 . . 3 ((♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
13 1re 10986 . . . . . 6 1 ∈ ℝ
14 ltpnf 12867 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
1513, 14ax-mp 5 . . . . 5 1 < +∞
16 breq2 5083 . . . . 5 ((♯‘𝑀) = +∞ → (1 < (♯‘𝑀) ↔ 1 < +∞))
1715, 16mpbiri 257 . . . 4 ((♯‘𝑀) = +∞ → 1 < (♯‘𝑀))
18173mix3d 1337 . . 3 ((♯‘𝑀) = +∞ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1912, 18jaoi 854 . 2 (((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
201, 19syl 17 1 (𝑀𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  w3o 1085   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  cr 10881  0cc0 10882  1c1 10883  +∞cpnf 11017   < clt 11020  cn 11984  0cn0 12244  chash 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-n0 12245  df-xnn0 12317  df-z 12331  df-uz 12594  df-hash 14056
This theorem is referenced by:  hashge2el2difr  14206  symgvalstruct  19015  symgvalstructOLD  19016  01eq0ring  20554  tgldimor  26874  frgrwopreg  28696
  Copyright terms: Public domain W3C validator