![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashv01gt1 | Structured version Visualization version GIF version |
Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.) |
Ref | Expression |
---|---|
hashv01gt1 | ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnn0pnf 14331 | . 2 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) | |
2 | elnn0 12502 | . . . 4 ⊢ ((♯‘𝑀) ∈ ℕ0 ↔ ((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0)) | |
3 | exmidne 2940 | . . . . . . . 8 ⊢ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1) | |
4 | nngt1ne1 12269 | . . . . . . . . 9 ⊢ ((♯‘𝑀) ∈ ℕ → (1 < (♯‘𝑀) ↔ (♯‘𝑀) ≠ 1)) | |
5 | 4 | orbi2d 913 | . . . . . . . 8 ⊢ ((♯‘𝑀) ∈ ℕ → (((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1))) |
6 | 3, 5 | mpbiri 257 | . . . . . . 7 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
7 | 6 | olcd 872 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))) |
8 | 3orass 1087 | . . . . . 6 ⊢ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))) | |
9 | 7, 8 | sylibr 233 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
10 | 3mix1 1327 | . . . . 5 ⊢ ((♯‘𝑀) = 0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | |
11 | 9, 10 | jaoi 855 | . . . 4 ⊢ (((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
12 | 2, 11 | sylbi 216 | . . 3 ⊢ ((♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
13 | 1re 11242 | . . . . . 6 ⊢ 1 ∈ ℝ | |
14 | ltpnf 13130 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
16 | breq2 5147 | . . . . 5 ⊢ ((♯‘𝑀) = +∞ → (1 < (♯‘𝑀) ↔ 1 < +∞)) | |
17 | 15, 16 | mpbiri 257 | . . . 4 ⊢ ((♯‘𝑀) = +∞ → 1 < (♯‘𝑀)) |
18 | 17 | 3mix3d 1335 | . . 3 ⊢ ((♯‘𝑀) = +∞ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
19 | 12, 18 | jaoi 855 | . 2 ⊢ (((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 class class class wbr 5143 ‘cfv 6542 ℝcr 11135 0cc0 11136 1c1 11137 +∞cpnf 11273 < clt 11276 ℕcn 12240 ℕ0cn0 12500 ♯chash 14319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-hash 14320 |
This theorem is referenced by: hashge2el2difr 14472 symgvalstruct 19353 symgvalstructOLD 19354 01eq0ringOLD 20470 tgldimor 28348 frgrwopreg 30175 |
Copyright terms: Public domain | W3C validator |