![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashv01gt1 | Structured version Visualization version GIF version |
Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017.) |
Ref | Expression |
---|---|
hashv01gt1 | ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnn0pnf 13515 | . 2 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) | |
2 | elnn0 11707 | . . . 4 ⊢ ((♯‘𝑀) ∈ ℕ0 ↔ ((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0)) | |
3 | exmidne 2970 | . . . . . . . 8 ⊢ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1) | |
4 | nngt1ne1 11467 | . . . . . . . . 9 ⊢ ((♯‘𝑀) ∈ ℕ → (1 < (♯‘𝑀) ↔ (♯‘𝑀) ≠ 1)) | |
5 | 4 | orbi2d 900 | . . . . . . . 8 ⊢ ((♯‘𝑀) ∈ ℕ → (((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 1 ∨ (♯‘𝑀) ≠ 1))) |
6 | 3, 5 | mpbiri 250 | . . . . . . 7 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
7 | 6 | olcd 861 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))) |
8 | 3orass 1072 | . . . . . 6 ⊢ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ ((♯‘𝑀) = 0 ∨ ((♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))) | |
9 | 7, 8 | sylibr 226 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
10 | 3mix1 1311 | . . . . 5 ⊢ ((♯‘𝑀) = 0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | |
11 | 9, 10 | jaoi 844 | . . . 4 ⊢ (((♯‘𝑀) ∈ ℕ ∨ (♯‘𝑀) = 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
12 | 2, 11 | sylbi 209 | . . 3 ⊢ ((♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
13 | 1re 10437 | . . . . . 6 ⊢ 1 ∈ ℝ | |
14 | ltpnf 12330 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
16 | breq2 4929 | . . . . 5 ⊢ ((♯‘𝑀) = +∞ → (1 < (♯‘𝑀) ↔ 1 < +∞)) | |
17 | 15, 16 | mpbiri 250 | . . . 4 ⊢ ((♯‘𝑀) = +∞ → 1 < (♯‘𝑀)) |
18 | 17 | 3mix3d 1319 | . . 3 ⊢ ((♯‘𝑀) = +∞ → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
19 | 12, 18 | jaoi 844 | . 2 ⊢ (((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 834 ∨ w3o 1068 = wceq 1508 ∈ wcel 2051 ≠ wne 2960 class class class wbr 4925 ‘cfv 6185 ℝcr 10332 0cc0 10333 1c1 10334 +∞cpnf 10469 < clt 10472 ℕcn 11437 ℕ0cn0 11705 ♯chash 13503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-n0 11706 df-xnn0 11778 df-z 11792 df-uz 12057 df-hash 13504 |
This theorem is referenced by: hashge2el2difr 13648 01eq0ring 19778 tgldimor 26005 frgrwopreg 27872 |
Copyright terms: Public domain | W3C validator |