Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoeq2 Structured version   Visualization version   GIF version

Theorem tendoeq2 36583
Description: Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 36633, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoeq2.b 𝐵 = (Base‘𝐾)
tendoeq2.h 𝐻 = (LHyp‘𝐾)
tendoeq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoeq2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoeq2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
Distinct variable groups:   𝑓,𝐸   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊   𝑈,𝑓   𝑓,𝑉
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem tendoeq2
StepHypRef Expression
1 tendoeq2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2 tendoeq2.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 tendoeq2.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendoid 36582 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
54adantrr 688 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
61, 2, 3tendoid 36582 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸) → (𝑉‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
76adantrl 687 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑉‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
85, 7eqtr4d 2808 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈‘( I ↾ 𝐵)) = (𝑉‘( I ↾ 𝐵)))
9 fveq2 6332 . . . . . 6 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑈‘( I ↾ 𝐵)))
10 fveq2 6332 . . . . . 6 (𝑓 = ( I ↾ 𝐵) → (𝑉𝑓) = (𝑉‘( I ↾ 𝐵)))
119, 10eqeq12d 2786 . . . . 5 (𝑓 = ( I ↾ 𝐵) → ((𝑈𝑓) = (𝑉𝑓) ↔ (𝑈‘( I ↾ 𝐵)) = (𝑉‘( I ↾ 𝐵))))
128, 11syl5ibrcom 237 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)))
1312ralrimivw 3116 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → ∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)))
14 r19.26 3212 . . . . 5 (∀𝑓𝑇 ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ (∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))))
15 jaob 923 . . . . . . 7 (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))))
16 exmidne 2953 . . . . . . . 8 (𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵))
17 pm5.5 350 . . . . . . . 8 ((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ (𝑈𝑓) = (𝑉𝑓)))
1816, 17ax-mp 5 . . . . . . 7 (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ (𝑈𝑓) = (𝑉𝑓))
1915, 18bitr3i 266 . . . . . 6 (((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ (𝑈𝑓) = (𝑉𝑓))
2019ralbii 3129 . . . . 5 (∀𝑓𝑇 ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
2114, 20bitr3i 266 . . . 4 ((∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
22 tendoeq2.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
232, 22, 3tendoeq1 36573 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉)
24233expia 1114 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓) → 𝑈 = 𝑉))
2521, 24syl5bi 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → ((∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉))
2613, 25mpand 667 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉))
27263impia 1109 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 826  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061   I cid 5156  cres 5251  cfv 6031  Basecbs 16064  HLchlt 35159  LHypclh 35792  LTrncltrn 35909  TEndoctendo 36561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968  df-tendo 36564
This theorem is referenced by:  tendocan  36633
  Copyright terms: Public domain W3C validator