Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoeq2 Structured version   Visualization version   GIF version

Theorem tendoeq2 40731
Description: Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 40781, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendoeq2.b 𝐵 = (Base‘𝐾)
tendoeq2.h 𝐻 = (LHyp‘𝐾)
tendoeq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoeq2.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoeq2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
Distinct variable groups:   𝑓,𝐸   𝑓,𝐻   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊   𝑈,𝑓   𝑓,𝑉
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem tendoeq2
StepHypRef Expression
1 tendoeq2.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2 tendoeq2.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 tendoeq2.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendoid 40730 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
54adantrr 716 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
61, 2, 3tendoid 40730 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸) → (𝑉‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
76adantrl 715 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑉‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
85, 7eqtr4d 2783 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈‘( I ↾ 𝐵)) = (𝑉‘( I ↾ 𝐵)))
9 fveq2 6920 . . . . . 6 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑈‘( I ↾ 𝐵)))
10 fveq2 6920 . . . . . 6 (𝑓 = ( I ↾ 𝐵) → (𝑉𝑓) = (𝑉‘( I ↾ 𝐵)))
119, 10eqeq12d 2756 . . . . 5 (𝑓 = ( I ↾ 𝐵) → ((𝑈𝑓) = (𝑉𝑓) ↔ (𝑈‘( I ↾ 𝐵)) = (𝑉‘( I ↾ 𝐵))))
128, 11syl5ibrcom 247 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)))
1312ralrimivw 3156 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → ∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)))
14 r19.26 3117 . . . . 5 (∀𝑓𝑇 ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ (∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))))
15 jaob 962 . . . . . . 7 (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))))
16 exmidne 2956 . . . . . . . 8 (𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵))
17 pm5.5 361 . . . . . . . 8 ((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ (𝑈𝑓) = (𝑉𝑓)))
1816, 17ax-mp 5 . . . . . . 7 (((𝑓 = ( I ↾ 𝐵) ∨ 𝑓 ≠ ( I ↾ 𝐵)) → (𝑈𝑓) = (𝑉𝑓)) ↔ (𝑈𝑓) = (𝑉𝑓))
1915, 18bitr3i 277 . . . . . 6 (((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ (𝑈𝑓) = (𝑉𝑓))
2019ralbii 3099 . . . . 5 (∀𝑓𝑇 ((𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
2114, 20bitr3i 277 . . . 4 ((∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
22 tendoeq2.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
232, 22, 3tendoeq1 40721 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉)
24233expia 1121 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓) → 𝑈 = 𝑉))
2521, 24biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → ((∀𝑓𝑇 (𝑓 = ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉))
2613, 25mpand 694 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉))
27263impia 1117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067   I cid 5592  cres 5702  cfv 6573  Basecbs 17258  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712
This theorem is referenced by:  tendocan  40781
  Copyright terms: Public domain W3C validator