MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab2 Structured version   Visualization version   GIF version

Theorem dfoprab2 7220
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
dfoprab2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 excom 2169 . . . 4 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤𝑧𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2 exrot4 2173 . . . . 5 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
3 opeq1 4756 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
43eqeq2d 2749 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑣 = ⟨𝑤, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
54pm5.32ri 579 . . . . . . . . . 10 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
65anbi1i 627 . . . . . . . . 9 (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑))
7 anass 472 . . . . . . . . 9 (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
8 an32 646 . . . . . . . . 9 (((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
96, 7, 83bitr3i 304 . . . . . . . 8 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
109exbii 1854 . . . . . . 7 (∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
11 opex 5319 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
1211isseti 3412 . . . . . . . 8 𝑤 𝑤 = ⟨𝑥, 𝑦
13 19.42v 1960 . . . . . . . 8 (∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ ∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩))
1412, 13mpbiran2 710 . . . . . . 7 (∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
1510, 14bitri 278 . . . . . 6 (∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
16153exbii 1856 . . . . 5 (∃𝑥𝑦𝑧𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
172, 16bitri 278 . . . 4 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
18 19.42vv 1964 . . . . 5 (∃𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
19182exbii 1855 . . . 4 (∃𝑤𝑧𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
201, 17, 193bitr3i 304 . . 3 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2120abbii 2803 . 2 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
22 df-oprab 7168 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
23 df-opab 5090 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
2421, 22, 233eqtr4i 2771 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wex 1786  {cab 2716  cop 4519  {copab 5089  {coprab 7165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-11 2161  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3399  df-dif 3844  df-un 3846  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-opab 5090  df-oprab 7168
This theorem is referenced by:  reloprab  7221  oprabv  7222  cbvoprab1  7249  cbvoprab12  7251  cbvoprab3  7253  dmoprab  7263  rnoprab  7265  ssoprab2i  7271  mpomptx  7273  resoprab  7278  funoprabg  7281  elrnmpores  7297  ov6g  7322  dfoprab3s  7769  xpcomco  8649  omxpenlem  8660  nvss  28520  mpomptxf  30583  bj-dfmpoa  34899  mpomptx2  45188
  Copyright terms: Public domain W3C validator