MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab2 Structured version   Visualization version   GIF version

Theorem dfoprab2 6903
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
dfoprab2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 excom 2206 . . . 4 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤𝑧𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2 exrot4 2210 . . . . 5 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
3 opeq1 4561 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
43eqeq2d 2775 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑣 = ⟨𝑤, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
54pm5.32ri 571 . . . . . . . . . 10 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
65anbi1i 617 . . . . . . . . 9 (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑))
7 anass 460 . . . . . . . . 9 (((𝑣 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
8 an32 636 . . . . . . . . 9 (((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ∧ 𝜑) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
96, 7, 83bitr3i 292 . . . . . . . 8 ((𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
109exbii 1943 . . . . . . 7 (∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
11 opex 5090 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
1211isseti 3362 . . . . . . . 8 𝑤 𝑤 = ⟨𝑥, 𝑦
13 19.42v 2048 . . . . . . . 8 (∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ ∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩))
1412, 13mpbiran2 701 . . . . . . 7 (∃𝑤((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
1510, 14bitri 266 . . . . . 6 (∃𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
16153exbii 1945 . . . . 5 (∃𝑥𝑦𝑧𝑤(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
172, 16bitri 266 . . . 4 (∃𝑧𝑤𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
18 19.42vv 2051 . . . . 5 (∃𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
19182exbii 1944 . . . 4 (∃𝑤𝑧𝑥𝑦(𝑣 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
201, 17, 193bitr3i 292 . . 3 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2120abbii 2882 . 2 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
22 df-oprab 6850 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
23 df-opab 4874 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑤𝑧(𝑣 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))}
2421, 22, 233eqtr4i 2797 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1652  wex 1874  {cab 2751  cop 4342  {copab 4873  {coprab 6847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-opab 4874  df-oprab 6850
This theorem is referenced by:  reloprab  6904  oprabv  6905  cbvoprab1  6929  cbvoprab12  6931  cbvoprab3  6933  dmoprab  6943  rnoprab  6945  ssoprab2i  6951  mpt2mptx  6953  resoprab  6958  funoprabg  6961  elrnmpt2res  6976  ov6g  7000  dfoprab3s  7427  xpcomco  8261  omxpenlem  8272  nvss  27927  mpt2mptxf  29949  bj-dfmpt2a  33522  mpt2mptx2  42808
  Copyright terms: Public domain W3C validator