MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elvvv Structured version   Visualization version   GIF version

Theorem elvvv 5717
Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
elvvv (𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem elvvv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elxp 5664 . 2 (𝐴 ∈ ((V × V) × V) ↔ ∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)))
2 ancom 460 . . . . . 6 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
322exbii 1849 . . . . 5 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
4 19.42vv 1957 . . . . . 6 (∃𝑥𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
5 elvv 5716 . . . . . . 7 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
65anbi2i 623 . . . . . 6 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
7 vex 3454 . . . . . . 7 𝑧 ∈ V
87biantru 529 . . . . . 6 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ↔ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V))
94, 6, 83bitr2i 299 . . . . 5 (∃𝑥𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V))
10 anass 468 . . . . 5 (((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)))
113, 9, 103bitrri 298 . . . 4 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
12112exbii 1849 . . 3 (∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑤𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
13 exrot4 2167 . . 3 (∃𝑥𝑦𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑤𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
14 excom 2163 . . . . 5 (∃𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
15 opex 5427 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
16 opeq1 4840 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1716eqeq2d 2741 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑤, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
1815, 17ceqsexv 3501 . . . . . 6 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1918exbii 1848 . . . . 5 (∃𝑧𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2014, 19bitri 275 . . . 4 (∃𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
21202exbii 1849 . . 3 (∃𝑥𝑦𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2212, 13, 213bitr2i 299 . 2 (∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
231, 22bitri 275 1 (𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cop 4598   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647
This theorem is referenced by:  ssrelrel  5762  dftpos3  8226
  Copyright terms: Public domain W3C validator