Step | Hyp | Ref
| Expression |
1 | | elxp 5661 |
. 2
⊢ (𝐴 ∈ ((V × V) ×
V) ↔ ∃𝑤∃𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V))) |
2 | | ancom 462 |
. . . . . 6
⊢ ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩)) |
3 | 2 | 2exbii 1852 |
. . . . 5
⊢
(∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩)) |
4 | | 19.42vv 1962 |
. . . . . 6
⊢
(∃𝑥∃𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩)) |
5 | | elvv 5711 |
. . . . . . 7
⊢ (𝑤 ∈ (V × V) ↔
∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩) |
6 | 5 | anbi2i 624 |
. . . . . 6
⊢ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩)) |
7 | | vex 3452 |
. . . . . . 7
⊢ 𝑧 ∈ V |
8 | 7 | biantru 531 |
. . . . . 6
⊢ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ↔ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V)) |
9 | 4, 6, 8 | 3bitr2i 299 |
. . . . 5
⊢
(∃𝑥∃𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V)) |
10 | | anass 470 |
. . . . 5
⊢ (((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V))) |
11 | 3, 9, 10 | 3bitrri 298 |
. . . 4
⊢ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩)) |
12 | 11 | 2exbii 1852 |
. . 3
⊢
(∃𝑤∃𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑤∃𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩)) |
13 | | exrot4 2167 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑤∃𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑤∃𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩)) |
14 | | excom 2163 |
. . . . 5
⊢
(∃𝑤∃𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩)) |
15 | | opex 5426 |
. . . . . . 7
⊢
⟨𝑥, 𝑦⟩ ∈ V |
16 | | opeq1 4835 |
. . . . . . . 8
⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
17 | 16 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑤, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)) |
18 | 15, 17 | ceqsexv 3497 |
. . . . . 6
⊢
(∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
19 | 18 | exbii 1851 |
. . . . 5
⊢
(∃𝑧∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
20 | 14, 19 | bitri 275 |
. . . 4
⊢
(∃𝑤∃𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
21 | 20 | 2exbii 1852 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑤∃𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
22 | 12, 13, 21 | 3bitr2i 299 |
. 2
⊢
(∃𝑤∃𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |
23 | 1, 22 | bitri 275 |
1
⊢ (𝐴 ∈ ((V × V) ×
V) ↔ ∃𝑥∃𝑦∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩) |