HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem7 Structured version   Visualization version   GIF version

Theorem 5oalem7 28859
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1 𝐴S
5oalem5.2 𝐵S
5oalem5.3 𝐶S
5oalem5.4 𝐷S
5oalem5.5 𝐹S
5oalem5.6 𝐺S
5oalem5.7 𝑅S
5oalem5.8 𝑆S
Assertion
Ref Expression
5oalem7 (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ⊆ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))

Proof of Theorem 5oalem7
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ee4anv 2346 . . . 4 (∃𝑥𝑦𝑓𝑔(∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ (∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
2 exrot4 2202 . . . . . 6 (∃𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ∃𝑓𝑔𝑧𝑤𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
3 ee4anv 2346 . . . . . . 7 (∃𝑧𝑤𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ (∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
432exbii 1925 . . . . . 6 (∃𝑓𝑔𝑧𝑤𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ∃𝑓𝑔(∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
52, 4bitri 264 . . . . 5 (∃𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ∃𝑓𝑔(∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
652exbii 1925 . . . 4 (∃𝑥𝑦𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ∃𝑥𝑦𝑓𝑔(∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
7 elin 3947 . . . . 5 ( ∈ (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ↔ ( ∈ ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∧ ∈ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))))
8 5oalem5.1 . . . . . . . . . 10 𝐴S
9 5oalem5.2 . . . . . . . . . 10 𝐵S
108, 9shseli 28515 . . . . . . . . 9 ( ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 = (𝑥 + 𝑦))
11 r2ex 3209 . . . . . . . . 9 (∃𝑥𝐴𝑦𝐵 = (𝑥 + 𝑦) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)))
1210, 11bitri 264 . . . . . . . 8 ( ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)))
13 5oalem5.3 . . . . . . . . . 10 𝐶S
14 5oalem5.4 . . . . . . . . . 10 𝐷S
1513, 14shseli 28515 . . . . . . . . 9 ( ∈ (𝐶 + 𝐷) ↔ ∃𝑧𝐶𝑤𝐷 = (𝑧 + 𝑤))
16 r2ex 3209 . . . . . . . . 9 (∃𝑧𝐶𝑤𝐷 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤)))
1715, 16bitri 264 . . . . . . . 8 ( ∈ (𝐶 + 𝐷) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤)))
1812, 17anbi12i 612 . . . . . . 7 (( ∈ (𝐴 + 𝐵) ∧ ∈ (𝐶 + 𝐷)) ↔ (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))))
19 elin 3947 . . . . . . 7 ( ∈ ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ↔ ( ∈ (𝐴 + 𝐵) ∧ ∈ (𝐶 + 𝐷)))
20 ee4anv 2346 . . . . . . 7 (∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ↔ (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))))
2118, 19, 203bitr4ri 293 . . . . . 6 (∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ↔ ∈ ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)))
22 5oalem5.5 . . . . . . . . . 10 𝐹S
23 5oalem5.6 . . . . . . . . . 10 𝐺S
2422, 23shseli 28515 . . . . . . . . 9 ( ∈ (𝐹 + 𝐺) ↔ ∃𝑓𝐹𝑔𝐺 = (𝑓 + 𝑔))
25 r2ex 3209 . . . . . . . . 9 (∃𝑓𝐹𝑔𝐺 = (𝑓 + 𝑔) ↔ ∃𝑓𝑔((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)))
2624, 25bitri 264 . . . . . . . 8 ( ∈ (𝐹 + 𝐺) ↔ ∃𝑓𝑔((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)))
27 5oalem5.7 . . . . . . . . . 10 𝑅S
28 5oalem5.8 . . . . . . . . . 10 𝑆S
2927, 28shseli 28515 . . . . . . . . 9 ( ∈ (𝑅 + 𝑆) ↔ ∃𝑣𝑅𝑢𝑆 = (𝑣 + 𝑢))
30 r2ex 3209 . . . . . . . . 9 (∃𝑣𝑅𝑢𝑆 = (𝑣 + 𝑢) ↔ ∃𝑣𝑢((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))
3129, 30bitri 264 . . . . . . . 8 ( ∈ (𝑅 + 𝑆) ↔ ∃𝑣𝑢((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))
3226, 31anbi12i 612 . . . . . . 7 (( ∈ (𝐹 + 𝐺) ∧ ∈ (𝑅 + 𝑆)) ↔ (∃𝑓𝑔((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ∃𝑣𝑢((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))))
33 elin 3947 . . . . . . 7 ( ∈ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆)) ↔ ( ∈ (𝐹 + 𝐺) ∧ ∈ (𝑅 + 𝑆)))
34 ee4anv 2346 . . . . . . 7 (∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))) ↔ (∃𝑓𝑔((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ∃𝑣𝑢((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))))
3532, 33, 343bitr4ri 293 . . . . . 6 (∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))) ↔ ∈ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆)))
3621, 35anbi12i 612 . . . . 5 ((∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ( ∈ ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∧ ∈ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))))
377, 36bitr4i 267 . . . 4 ( ∈ (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ↔ (∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
381, 6, 373bitr4ri 293 . . 3 ( ∈ (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ↔ ∃𝑥𝑦𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
398, 9, 13, 14, 22, 23, 27, 285oalem6 28858 . . . . . . 7 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4039exlimivv 2012 . . . . . 6 (∃𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4140exlimivv 2012 . . . . 5 (∃𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4241exlimivv 2012 . . . 4 (∃𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4342exlimivv 2012 . . 3 (∃𝑥𝑦𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4438, 43sylbi 207 . 2 ( ∈ (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4544ssriv 3756 1 (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ⊆ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wex 1852  wcel 2145  wrex 3062  cin 3722  wss 3723  (class class class)co 6793   + cva 28117   S csh 28125   + cph 28128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-hilex 28196  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvmulass 28204  ax-hvdistr1 28205  ax-hvdistr2 28206  ax-hvmul0 28207
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-sub 10470  df-neg 10471  df-nn 11223  df-grpo 27687  df-ablo 27739  df-hvsub 28168  df-hlim 28169  df-sh 28404  df-ch 28418  df-shs 28507
This theorem is referenced by:  5oai  28860
  Copyright terms: Public domain W3C validator