HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem7 Structured version   Visualization version   GIF version

Theorem 5oalem7 31630
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) TODO: replace uses of ee4anv 2350 with 4exdistrv 1957 as in 3oalem3 31634. (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1 𝐴S
5oalem5.2 𝐵S
5oalem5.3 𝐶S
5oalem5.4 𝐷S
5oalem5.5 𝐹S
5oalem5.6 𝐺S
5oalem5.7 𝑅S
5oalem5.8 𝑆S
Assertion
Ref Expression
5oalem7 (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ⊆ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))

Proof of Theorem 5oalem7
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ee4anv 2350 . . . 4 (∃𝑥𝑦𝑓𝑔(∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ (∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
2 exrot4 2168 . . . . . 6 (∃𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ∃𝑓𝑔𝑧𝑤𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
3 ee4anv 2350 . . . . . . 7 (∃𝑧𝑤𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ (∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
432exbii 1850 . . . . . 6 (∃𝑓𝑔𝑧𝑤𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ∃𝑓𝑔(∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
52, 4bitri 275 . . . . 5 (∃𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ∃𝑓𝑔(∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
652exbii 1850 . . . 4 (∃𝑥𝑦𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ∃𝑥𝑦𝑓𝑔(∃𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
7 elin 3916 . . . . 5 ( ∈ (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ↔ ( ∈ ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∧ ∈ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))))
8 5oalem5.1 . . . . . . . . . 10 𝐴S
9 5oalem5.2 . . . . . . . . . 10 𝐵S
108, 9shseli 31286 . . . . . . . . 9 ( ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 = (𝑥 + 𝑦))
11 r2ex 3167 . . . . . . . . 9 (∃𝑥𝐴𝑦𝐵 = (𝑥 + 𝑦) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)))
1210, 11bitri 275 . . . . . . . 8 ( ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)))
13 5oalem5.3 . . . . . . . . . 10 𝐶S
14 5oalem5.4 . . . . . . . . . 10 𝐷S
1513, 14shseli 31286 . . . . . . . . 9 ( ∈ (𝐶 + 𝐷) ↔ ∃𝑧𝐶𝑤𝐷 = (𝑧 + 𝑤))
16 r2ex 3167 . . . . . . . . 9 (∃𝑧𝐶𝑤𝐷 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤)))
1715, 16bitri 275 . . . . . . . 8 ( ∈ (𝐶 + 𝐷) ↔ ∃𝑧𝑤((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤)))
1812, 17anbi12i 628 . . . . . . 7 (( ∈ (𝐴 + 𝐵) ∧ ∈ (𝐶 + 𝐷)) ↔ (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))))
19 elin 3916 . . . . . . 7 ( ∈ ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ↔ ( ∈ (𝐴 + 𝐵) ∧ ∈ (𝐶 + 𝐷)))
20 ee4anv 2350 . . . . . . 7 (∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ↔ (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ∃𝑧𝑤((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))))
2118, 19, 203bitr4ri 304 . . . . . 6 (∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ↔ ∈ ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)))
22 5oalem5.5 . . . . . . . . . 10 𝐹S
23 5oalem5.6 . . . . . . . . . 10 𝐺S
2422, 23shseli 31286 . . . . . . . . 9 ( ∈ (𝐹 + 𝐺) ↔ ∃𝑓𝐹𝑔𝐺 = (𝑓 + 𝑔))
25 r2ex 3167 . . . . . . . . 9 (∃𝑓𝐹𝑔𝐺 = (𝑓 + 𝑔) ↔ ∃𝑓𝑔((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)))
2624, 25bitri 275 . . . . . . . 8 ( ∈ (𝐹 + 𝐺) ↔ ∃𝑓𝑔((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)))
27 5oalem5.7 . . . . . . . . . 10 𝑅S
28 5oalem5.8 . . . . . . . . . 10 𝑆S
2927, 28shseli 31286 . . . . . . . . 9 ( ∈ (𝑅 + 𝑆) ↔ ∃𝑣𝑅𝑢𝑆 = (𝑣 + 𝑢))
30 r2ex 3167 . . . . . . . . 9 (∃𝑣𝑅𝑢𝑆 = (𝑣 + 𝑢) ↔ ∃𝑣𝑢((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))
3129, 30bitri 275 . . . . . . . 8 ( ∈ (𝑅 + 𝑆) ↔ ∃𝑣𝑢((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))
3226, 31anbi12i 628 . . . . . . 7 (( ∈ (𝐹 + 𝐺) ∧ ∈ (𝑅 + 𝑆)) ↔ (∃𝑓𝑔((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ∃𝑣𝑢((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))))
33 elin 3916 . . . . . . 7 ( ∈ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆)) ↔ ( ∈ (𝐹 + 𝐺) ∧ ∈ (𝑅 + 𝑆)))
34 ee4anv 2350 . . . . . . 7 (∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))) ↔ (∃𝑓𝑔((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ∃𝑣𝑢((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))))
3532, 33, 343bitr4ri 304 . . . . . 6 (∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))) ↔ ∈ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆)))
3621, 35anbi12i 628 . . . . 5 ((∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) ↔ ( ∈ ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∧ ∈ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))))
377, 36bitr4i 278 . . . 4 ( ∈ (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ↔ (∃𝑥𝑦𝑧𝑤(((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ ∃𝑓𝑔𝑣𝑢(((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
381, 6, 373bitr4ri 304 . . 3 ( ∈ (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ↔ ∃𝑥𝑦𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))))
398, 9, 13, 14, 22, 23, 27, 285oalem6 31629 . . . . . . 7 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4039exlimivv 1933 . . . . . 6 (∃𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4140exlimivv 1933 . . . . 5 (∃𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4241exlimivv 1933 . . . 4 (∃𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4342exlimivv 1933 . . 3 (∃𝑥𝑦𝑧𝑤𝑓𝑔𝑣𝑢((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4438, 43sylbi 217 . 2 ( ∈ (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
4544ssriv 3936 1 (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ⊆ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2110  wrex 3054  cin 3899  wss 3900  (class class class)co 7341   + cva 30890   S csh 30898   + cph 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-hilex 30969  ax-hfvadd 30970  ax-hvcom 30971  ax-hvass 30972  ax-hv0cl 30973  ax-hvaddid 30974  ax-hfvmul 30975  ax-hvmulid 30976  ax-hvmulass 30977  ax-hvdistr1 30978  ax-hvdistr2 30979  ax-hvmul0 30980
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-ltxr 11143  df-sub 11338  df-neg 11339  df-nn 12118  df-grpo 30463  df-ablo 30515  df-hvsub 30941  df-hlim 30942  df-sh 31177  df-ch 31191  df-shs 31278
This theorem is referenced by:  5oai  31631
  Copyright terms: Public domain W3C validator