Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oeq3dd Structured version   Visualization version   GIF version

Theorem f1oeq3dd 32603
Description: Equality deduction for one-to-one onto functions. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
f1oeq3dd.1 (𝜑𝐹:𝐶1-1-onto𝐴)
f1oeq3dd.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
f1oeq3dd (𝜑𝐹:𝐶1-1-onto𝐵)

Proof of Theorem f1oeq3dd
StepHypRef Expression
1 f1oeq3dd.1 . 2 (𝜑𝐹:𝐶1-1-onto𝐴)
2 f1oeq3dd.2 . . 3 (𝜑𝐴 = 𝐵)
32f1oeq3d 6755 . 2 (𝜑 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
41, 3mpbid 232 1 (𝜑𝐹:𝐶1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  1-1-ontowf1o 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ss 3914  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483
This theorem is referenced by:  fcobijfs2  32697
  Copyright terms: Public domain W3C validator