| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1rnen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity of the range of an injective function. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
| Ref | Expression |
|---|---|
| f1rnen | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉) → ran 𝐹 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 6757 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 Fn 𝐴) |
| 3 | fnima 6648 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) = ran 𝐹) |
| 5 | ssid 3969 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 6 | f1imaeng 8985 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ≈ 𝐴) | |
| 7 | 5, 6 | mp3an2 1451 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ≈ 𝐴) |
| 8 | 4, 7 | eqbrtrrd 5131 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉) → ran 𝐹 ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ran crn 5639 “ cima 5641 Fn wfn 6506 –1-1→wf1 6508 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 |
| This theorem is referenced by: fedgmul 33627 |
| Copyright terms: Public domain | W3C validator |