Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1rnen Structured version   Visualization version   GIF version

Theorem f1rnen 32646
Description: Equinumerosity of the range of an injective function. (Contributed by Thierry Arnoux, 7-Jul-2023.)
Assertion
Ref Expression
f1rnen ((𝐹:𝐴1-1𝐵𝐴𝑉) → ran 𝐹𝐴)

Proof of Theorem f1rnen
StepHypRef Expression
1 f1fn 6806 . . . 4 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
21adantr 480 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉) → 𝐹 Fn 𝐴)
3 fnima 6699 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
42, 3syl 17 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉) → (𝐹𝐴) = ran 𝐹)
5 ssid 4018 . . 3 𝐴𝐴
6 f1imaeng 9053 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝐴𝐴𝑉) → (𝐹𝐴) ≈ 𝐴)
75, 6mp3an2 1448 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉) → (𝐹𝐴) ≈ 𝐴)
84, 7eqbrtrrd 5172 1 ((𝐹:𝐴1-1𝐵𝐴𝑉) → ran 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  ran crn 5690  cima 5692   Fn wfn 6558  1-1wf1 6560  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985
This theorem is referenced by:  fedgmul  33659
  Copyright terms: Public domain W3C validator