| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq3 6793 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 |
| This theorem is referenced by: resdif 6824 f1osng 6844 f1oresrab 7102 fveqf1o 7280 isoini2 7317 oacomf1o 8532 mapsnf1o 8915 domss2 9106 dif1enlem 9126 dif1enlemOLD 9127 infn0 9258 wemapwe 9657 oef1o 9658 cnfcomlem 9659 cnfcom3 9664 cnfcom3clem 9665 infxpenc 9978 infxpenc2lem1 9979 infxpenc2 9982 ackbij2lem2 10199 hsmexlem1 10386 fsumss 15698 fsumcnv 15746 fprodss 15921 fprodcnv 15956 pwssnf1o 17468 catcisolem 18079 equivestrcsetc 18120 yoniso 18253 gsumpropd 18612 gsumpropd2lem 18613 xpsmnd 18711 xpsgrp 18998 ghmqusker 19226 gsumval3lem1 19842 gsumval3lem2 19843 gsumcom2 19912 xpsrngd 20095 xpsringd 20248 rngqiprngim 21221 coe1mul2lem2 22161 scmatrngiso 22430 m2cpmrngiso 22652 cncfcnvcn 24826 isismt 28468 usgrf1oedg 29141 wlkiswwlks2lem5 29810 clwwlkvbij 30049 eupthres 30151 eupthp1 30152 cycpmconjvlem 33105 tocyccntz 33108 idomsubr 33266 dimkerim 33630 prodeq12sdv 36213 cbvsumdavw2 36290 cbvproddavw2 36291 poimirlem4 37625 poimirlem9 37630 rngoisoval 37978 frlmsnic 42535 sge0f1o 46387 nnfoctbdj 46461 3f1oss1 47080 f1oresf1o 47295 grimidvtxedg 47889 ushggricedg 47931 uhgrimisgrgric 47935 isubgr3stgrlem3 47971 uptrlem1 49203 uptrar 49209 uptr2 49214 oduoppcciso 49559 |
| Copyright terms: Public domain | W3C validator |