| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq3 6790 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: resdif 6821 f1osng 6841 f1oresrab 7099 fveqf1o 7277 isoini2 7314 oacomf1o 8529 mapsnf1o 8912 domss2 9100 dif1enlem 9120 dif1enlemOLD 9121 infn0 9251 wemapwe 9650 oef1o 9651 cnfcomlem 9652 cnfcom3 9657 cnfcom3clem 9658 infxpenc 9971 infxpenc2lem1 9972 infxpenc2 9975 ackbij2lem2 10192 hsmexlem1 10379 fsumss 15691 fsumcnv 15739 fprodss 15914 fprodcnv 15949 pwssnf1o 17461 catcisolem 18072 equivestrcsetc 18113 yoniso 18246 gsumpropd 18605 gsumpropd2lem 18606 xpsmnd 18704 xpsgrp 18991 ghmqusker 19219 gsumval3lem1 19835 gsumval3lem2 19836 gsumcom2 19905 xpsrngd 20088 xpsringd 20241 rngqiprngim 21214 coe1mul2lem2 22154 scmatrngiso 22423 m2cpmrngiso 22645 cncfcnvcn 24819 isismt 28461 usgrf1oedg 29134 wlkiswwlks2lem5 29803 clwwlkvbij 30042 eupthres 30144 eupthp1 30145 cycpmconjvlem 33098 tocyccntz 33101 idomsubr 33259 dimkerim 33623 prodeq12sdv 36206 cbvsumdavw2 36283 cbvproddavw2 36284 poimirlem4 37618 poimirlem9 37623 rngoisoval 37971 frlmsnic 42528 sge0f1o 46380 nnfoctbdj 46454 3f1oss1 47076 f1oresf1o 47291 grimidvtxedg 47885 ushggricedg 47927 uhgrimisgrgric 47931 isubgr3stgrlem3 47967 uptrlem1 49199 uptrar 49205 uptr2 49210 oduoppcciso 49555 |
| Copyright terms: Public domain | W3C validator |