Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq3 6698 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 –1-1-onto→wf1o 6425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3431 df-in 3893 df-ss 3903 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 |
This theorem is referenced by: resdif 6729 f1osng 6749 f1oresrab 6991 fveqf1o 7167 isoini2 7202 oacomf1o 8383 mapsnf1o 8714 domss2 8910 dif1enlem 8930 wemapwe 9442 oef1o 9443 cnfcomlem 9444 cnfcom3 9449 cnfcom3clem 9450 infxpenc 9784 infxpenc2lem1 9785 infxpenc2 9788 ackbij2lem2 10006 hsmexlem1 10192 fsumss 15447 fsumcnv 15495 fprodss 15668 fprodcnv 15703 pwssnf1o 17219 catcisolem 17835 equivestrcsetc 17879 yoniso 18013 gsumpropd 18372 gsumpropd2lem 18373 xpsmnd 18435 xpsgrp 18704 gsumval3lem1 19516 gsumval3lem2 19517 gsumcom2 19586 coe1mul2lem2 21449 scmatrngiso 21695 m2cpmrngiso 21917 cncfcnvcn 24098 isismt 26905 usgrf1oedg 27584 wlkiswwlks2lem5 28246 clwwlkvbij 28485 eupthres 28587 eupthp1 28588 cycpmconjvlem 31416 tocyccntz 31419 dimkerim 31716 poimirlem4 35789 poimirlem9 35794 rngoisoval 36143 frlmsnic 40271 sge0f1o 43901 nnfoctbdj 43975 f1oresf1o 44760 ushrisomgr 45271 |
Copyright terms: Public domain | W3C validator |