| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq3 6772 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 |
| This theorem is referenced by: resdif 6803 f1osng 6823 f1oresrab 7081 fveqf1o 7259 isoini2 7296 oacomf1o 8506 mapsnf1o 8889 domss2 9077 dif1enlem 9097 dif1enlemOLD 9098 infn0 9227 wemapwe 9626 oef1o 9627 cnfcomlem 9628 cnfcom3 9633 cnfcom3clem 9634 infxpenc 9947 infxpenc2lem1 9948 infxpenc2 9951 ackbij2lem2 10168 hsmexlem1 10355 fsumss 15667 fsumcnv 15715 fprodss 15890 fprodcnv 15925 pwssnf1o 17437 catcisolem 18052 equivestrcsetc 18093 yoniso 18226 gsumpropd 18587 gsumpropd2lem 18588 xpsmnd 18686 xpsgrp 18973 ghmqusker 19201 gsumval3lem1 19819 gsumval3lem2 19820 gsumcom2 19889 xpsrngd 20099 xpsringd 20252 rngqiprngim 21246 coe1mul2lem2 22187 scmatrngiso 22456 m2cpmrngiso 22678 cncfcnvcn 24852 isismt 28514 usgrf1oedg 29187 wlkiswwlks2lem5 29853 clwwlkvbij 30092 eupthres 30194 eupthp1 30195 cycpmconjvlem 33113 tocyccntz 33116 idomsubr 33275 dimkerim 33616 prodeq12sdv 36199 cbvsumdavw2 36276 cbvproddavw2 36277 poimirlem4 37611 poimirlem9 37616 rngoisoval 37964 frlmsnic 42521 sge0f1o 46373 nnfoctbdj 46447 3f1oss1 47069 f1oresf1o 47284 grimidvtxedg 47878 ushggricedg 47920 uhgrimisgrgric 47924 isubgr3stgrlem3 47960 uptrlem1 49192 uptrar 49198 uptr2 49203 oduoppcciso 49548 |
| Copyright terms: Public domain | W3C validator |