| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq3 6813 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ss 3948 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 |
| This theorem is referenced by: resdif 6844 f1osng 6864 f1oresrab 7122 fveqf1o 7300 isoini2 7337 oacomf1o 8582 mapsnf1o 8958 domss2 9155 dif1enlem 9175 dif1enlemOLD 9176 infn0 9317 wemapwe 9716 oef1o 9717 cnfcomlem 9718 cnfcom3 9723 cnfcom3clem 9724 infxpenc 10037 infxpenc2lem1 10038 infxpenc2 10041 ackbij2lem2 10258 hsmexlem1 10445 fsumss 15746 fsumcnv 15794 fprodss 15969 fprodcnv 16004 pwssnf1o 17517 catcisolem 18128 equivestrcsetc 18169 yoniso 18302 gsumpropd 18661 gsumpropd2lem 18662 xpsmnd 18760 xpsgrp 19047 ghmqusker 19275 gsumval3lem1 19891 gsumval3lem2 19892 gsumcom2 19961 xpsrngd 20144 xpsringd 20297 rngqiprngim 21270 coe1mul2lem2 22210 scmatrngiso 22479 m2cpmrngiso 22701 cncfcnvcn 24875 isismt 28518 usgrf1oedg 29191 wlkiswwlks2lem5 29860 clwwlkvbij 30099 eupthres 30201 eupthp1 30202 cycpmconjvlem 33157 tocyccntz 33160 idomsubr 33308 dimkerim 33672 prodeq12sdv 36241 cbvsumdavw2 36318 cbvproddavw2 36319 poimirlem4 37653 poimirlem9 37658 rngoisoval 38006 frlmsnic 42530 sge0f1o 46378 nnfoctbdj 46452 3f1oss1 47071 f1oresf1o 47286 grimidvtxedg 47865 ushggricedg 47907 uhgrimisgrgric 47911 isubgr3stgrlem3 47947 oduoppcciso 49410 |
| Copyright terms: Public domain | W3C validator |