![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq3 6852 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: resdif 6883 f1osng 6903 f1oresrab 7161 fveqf1o 7338 isoini2 7375 oacomf1o 8621 mapsnf1o 8997 domss2 9202 dif1enlem 9222 dif1enlemOLD 9223 infn0 9368 wemapwe 9766 oef1o 9767 cnfcomlem 9768 cnfcom3 9773 cnfcom3clem 9774 infxpenc 10087 infxpenc2lem1 10088 infxpenc2 10091 ackbij2lem2 10308 hsmexlem1 10495 fsumss 15773 fsumcnv 15821 fprodss 15996 fprodcnv 16031 pwssnf1o 17558 catcisolem 18177 equivestrcsetc 18221 yoniso 18355 gsumpropd 18716 gsumpropd2lem 18717 xpsmnd 18812 xpsgrp 19099 ghmqusker 19327 gsumval3lem1 19947 gsumval3lem2 19948 gsumcom2 20017 xpsrngd 20206 xpsringd 20355 rngqiprngim 21337 coe1mul2lem2 22292 scmatrngiso 22563 m2cpmrngiso 22785 cncfcnvcn 24971 isismt 28560 usgrf1oedg 29242 wlkiswwlks2lem5 29906 clwwlkvbij 30145 eupthres 30247 eupthp1 30248 cycpmconjvlem 33134 tocyccntz 33137 idomsubr 33276 dimkerim 33640 prodeq12sdv 36184 cbvsumdavw2 36261 cbvproddavw2 36262 poimirlem4 37584 poimirlem9 37589 rngoisoval 37937 frlmsnic 42495 sge0f1o 46303 nnfoctbdj 46377 3f1oss1 46990 f1oresf1o 47205 grimidvtxedg 47760 ushggricedg 47780 uhgrimisgrgric 47783 |
Copyright terms: Public domain | W3C validator |