| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq3 6772 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 |
| This theorem is referenced by: resdif 6803 f1osng 6823 f1oresrab 7081 fveqf1o 7259 isoini2 7296 oacomf1o 8506 mapsnf1o 8889 domss2 9077 dif1enlem 9097 dif1enlemOLD 9098 infn0 9227 wemapwe 9626 oef1o 9627 cnfcomlem 9628 cnfcom3 9633 cnfcom3clem 9634 infxpenc 9947 infxpenc2lem1 9948 infxpenc2 9951 ackbij2lem2 10168 hsmexlem1 10355 fsumss 15667 fsumcnv 15715 fprodss 15890 fprodcnv 15925 pwssnf1o 17437 catcisolem 18048 equivestrcsetc 18089 yoniso 18222 gsumpropd 18581 gsumpropd2lem 18582 xpsmnd 18680 xpsgrp 18967 ghmqusker 19195 gsumval3lem1 19811 gsumval3lem2 19812 gsumcom2 19881 xpsrngd 20064 xpsringd 20217 rngqiprngim 21190 coe1mul2lem2 22130 scmatrngiso 22399 m2cpmrngiso 22621 cncfcnvcn 24795 isismt 28437 usgrf1oedg 29110 wlkiswwlks2lem5 29776 clwwlkvbij 30015 eupthres 30117 eupthp1 30118 cycpmconjvlem 33071 tocyccntz 33074 idomsubr 33232 dimkerim 33596 prodeq12sdv 36179 cbvsumdavw2 36256 cbvproddavw2 36257 poimirlem4 37591 poimirlem9 37596 rngoisoval 37944 frlmsnic 42501 sge0f1o 46353 nnfoctbdj 46427 3f1oss1 47049 f1oresf1o 47264 grimidvtxedg 47858 ushggricedg 47900 uhgrimisgrgric 47904 isubgr3stgrlem3 47940 uptrlem1 49172 uptrar 49178 uptr2 49183 oduoppcciso 49528 |
| Copyright terms: Public domain | W3C validator |