| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq3 6753 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 |
| This theorem is referenced by: resdif 6784 f1osng 6804 f1oresrab 7060 fveqf1o 7236 isoini2 7273 oacomf1o 8480 mapsnf1o 8863 domss2 9049 dif1enlem 9069 infn0 9186 wemapwe 9587 oef1o 9588 cnfcomlem 9589 cnfcom3 9594 cnfcom3clem 9595 infxpenc 9909 infxpenc2lem1 9910 infxpenc2 9913 ackbij2lem2 10130 hsmexlem1 10317 fsumss 15632 fsumcnv 15680 fprodss 15855 fprodcnv 15890 pwssnf1o 17402 catcisolem 18017 equivestrcsetc 18058 yoniso 18191 gsumpropd 18586 gsumpropd2lem 18587 xpsmnd 18685 xpsgrp 18972 ghmqusker 19199 gsumval3lem1 19817 gsumval3lem2 19818 gsumcom2 19887 xpsrngd 20097 xpsringd 20250 rngqiprngim 21241 coe1mul2lem2 22182 scmatrngiso 22451 m2cpmrngiso 22673 cncfcnvcn 24846 isismt 28512 usgrf1oedg 29185 wlkiswwlks2lem5 29851 clwwlkvbij 30093 eupthres 30195 eupthp1 30196 f1oeq3dd 32611 cycpmconjvlem 33110 tocyccntz 33113 idomsubr 33275 dimkerim 33640 prodeq12sdv 36260 cbvsumdavw2 36337 cbvproddavw2 36338 poimirlem4 37672 poimirlem9 37677 rngoisoval 38025 frlmsnic 42581 sge0f1o 46428 nnfoctbdj 46502 3f1oss1 47114 f1oresf1o 47329 grimidvtxedg 47924 ushggricedg 47966 uhgrimisgrgric 47970 isubgr3stgrlem3 48007 uptrlem1 49250 uptrar 49256 uptr2 49261 oduoppcciso 49606 |
| Copyright terms: Public domain | W3C validator |