| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq3 6754 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 |
| This theorem is referenced by: resdif 6785 f1osng 6805 f1oresrab 7061 fveqf1o 7239 isoini2 7276 oacomf1o 8483 mapsnf1o 8866 domss2 9053 dif1enlem 9073 infn0 9191 wemapwe 9593 oef1o 9594 cnfcomlem 9595 cnfcom3 9600 cnfcom3clem 9601 infxpenc 9912 infxpenc2lem1 9913 infxpenc2 9916 ackbij2lem2 10133 hsmexlem1 10320 fsumss 15632 fsumcnv 15680 fprodss 15855 fprodcnv 15890 pwssnf1o 17402 catcisolem 18017 equivestrcsetc 18058 yoniso 18191 gsumpropd 18552 gsumpropd2lem 18553 xpsmnd 18651 xpsgrp 18938 ghmqusker 19166 gsumval3lem1 19784 gsumval3lem2 19785 gsumcom2 19854 xpsrngd 20064 xpsringd 20217 rngqiprngim 21211 coe1mul2lem2 22152 scmatrngiso 22421 m2cpmrngiso 22643 cncfcnvcn 24817 isismt 28479 usgrf1oedg 29152 wlkiswwlks2lem5 29818 clwwlkvbij 30057 eupthres 30159 eupthp1 30160 f1oeq3dd 32572 cycpmconjvlem 33083 tocyccntz 33086 idomsubr 33248 dimkerim 33594 prodeq12sdv 36192 cbvsumdavw2 36269 cbvproddavw2 36270 poimirlem4 37604 poimirlem9 37609 rngoisoval 37957 frlmsnic 42513 sge0f1o 46363 nnfoctbdj 46437 3f1oss1 47059 f1oresf1o 47274 grimidvtxedg 47869 ushggricedg 47911 uhgrimisgrgric 47915 isubgr3stgrlem3 47952 uptrlem1 49195 uptrar 49201 uptr2 49206 oduoppcciso 49551 |
| Copyright terms: Public domain | W3C validator |