Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq3 6690 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: resdif 6720 f1osng 6740 f1oresrab 6981 fveqf1o 7155 isoini2 7190 oacomf1o 8358 mapsnf1o 8685 domss2 8872 dif1enlem 8905 wemapwe 9385 oef1o 9386 cnfcomlem 9387 cnfcom3 9392 cnfcom3clem 9393 infxpenc 9705 infxpenc2lem1 9706 infxpenc2 9709 ackbij2lem2 9927 hsmexlem1 10113 fsumss 15365 fsumcnv 15413 fprodss 15586 fprodcnv 15621 pwssnf1o 17126 catcisolem 17741 equivestrcsetc 17785 yoniso 17919 gsumpropd 18277 gsumpropd2lem 18278 xpsmnd 18340 xpsgrp 18609 gsumval3lem1 19421 gsumval3lem2 19422 gsumcom2 19491 coe1mul2lem2 21349 scmatrngiso 21593 m2cpmrngiso 21815 cncfcnvcn 23994 isismt 26799 usgrf1oedg 27477 wlkiswwlks2lem5 28139 clwwlkvbij 28378 eupthres 28480 eupthp1 28481 cycpmconjvlem 31310 tocyccntz 31313 dimkerim 31610 poimirlem4 35708 poimirlem9 35713 rngoisoval 36062 frlmsnic 40188 sge0f1o 43810 nnfoctbdj 43884 f1oresf1o 44669 ushrisomgr 45181 |
Copyright terms: Public domain | W3C validator |