![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq3 6839 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: resdif 6870 f1osng 6890 f1oresrab 7147 fveqf1o 7322 isoini2 7359 oacomf1o 8602 mapsnf1o 8978 domss2 9175 dif1enlem 9195 dif1enlemOLD 9196 infn0 9338 wemapwe 9735 oef1o 9736 cnfcomlem 9737 cnfcom3 9742 cnfcom3clem 9743 infxpenc 10056 infxpenc2lem1 10057 infxpenc2 10060 ackbij2lem2 10277 hsmexlem1 10464 fsumss 15758 fsumcnv 15806 fprodss 15981 fprodcnv 16016 pwssnf1o 17545 catcisolem 18164 equivestrcsetc 18208 yoniso 18342 gsumpropd 18704 gsumpropd2lem 18705 xpsmnd 18803 xpsgrp 19090 ghmqusker 19318 gsumval3lem1 19938 gsumval3lem2 19939 gsumcom2 20008 xpsrngd 20197 xpsringd 20346 rngqiprngim 21332 coe1mul2lem2 22287 scmatrngiso 22558 m2cpmrngiso 22780 cncfcnvcn 24966 isismt 28557 usgrf1oedg 29239 wlkiswwlks2lem5 29903 clwwlkvbij 30142 eupthres 30244 eupthp1 30245 cycpmconjvlem 33144 tocyccntz 33147 idomsubr 33291 dimkerim 33655 prodeq12sdv 36201 cbvsumdavw2 36278 cbvproddavw2 36279 poimirlem4 37611 poimirlem9 37616 rngoisoval 37964 frlmsnic 42527 sge0f1o 46338 nnfoctbdj 46412 3f1oss1 47025 f1oresf1o 47240 grimidvtxedg 47814 ushggricedg 47834 uhgrimisgrgric 47837 isubgr3stgrlem3 47871 oduoppcciso 48882 |
Copyright terms: Public domain | W3C validator |