Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq3 6706 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: resdif 6737 f1osng 6757 f1oresrab 6999 fveqf1o 7175 isoini2 7210 oacomf1o 8396 mapsnf1o 8727 domss2 8923 dif1enlem 8943 wemapwe 9455 oef1o 9456 cnfcomlem 9457 cnfcom3 9462 cnfcom3clem 9463 infxpenc 9774 infxpenc2lem1 9775 infxpenc2 9778 ackbij2lem2 9996 hsmexlem1 10182 fsumss 15437 fsumcnv 15485 fprodss 15658 fprodcnv 15693 pwssnf1o 17209 catcisolem 17825 equivestrcsetc 17869 yoniso 18003 gsumpropd 18362 gsumpropd2lem 18363 xpsmnd 18425 xpsgrp 18694 gsumval3lem1 19506 gsumval3lem2 19507 gsumcom2 19576 coe1mul2lem2 21439 scmatrngiso 21685 m2cpmrngiso 21907 cncfcnvcn 24088 isismt 26895 usgrf1oedg 27574 wlkiswwlks2lem5 28238 clwwlkvbij 28477 eupthres 28579 eupthp1 28580 cycpmconjvlem 31408 tocyccntz 31411 dimkerim 31708 poimirlem4 35781 poimirlem9 35786 rngoisoval 36135 frlmsnic 40263 sge0f1o 43920 nnfoctbdj 43994 f1oresf1o 44782 ushrisomgr 45293 |
Copyright terms: Public domain | W3C validator |