Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rinvf1o Structured version   Visualization version   GIF version

Theorem rinvf1o 32122
Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
rinvbij.1 Fun 𝐹
rinvbij.2 ◑𝐹 = 𝐹
rinvbij.3a (𝐹 β€œ 𝐴) βŠ† 𝐡
rinvbij.3b (𝐹 β€œ 𝐡) βŠ† 𝐴
rinvbij.4a 𝐴 βŠ† dom 𝐹
rinvbij.4b 𝐡 βŠ† dom 𝐹
Assertion
Ref Expression
rinvf1o (𝐹 β†Ύ 𝐴):𝐴–1-1-onto→𝐡

Proof of Theorem rinvf1o
StepHypRef Expression
1 rinvbij.1 . . . . 5 Fun 𝐹
2 fdmrn 6749 . . . . 5 (Fun 𝐹 ↔ 𝐹:dom 𝐹⟢ran 𝐹)
31, 2mpbi 229 . . . 4 𝐹:dom 𝐹⟢ran 𝐹
4 rinvbij.2 . . . . . 6 ◑𝐹 = 𝐹
54funeqi 6569 . . . . 5 (Fun ◑𝐹 ↔ Fun 𝐹)
61, 5mpbir 230 . . . 4 Fun ◑𝐹
7 df-f1 6548 . . . 4 (𝐹:dom 𝐹–1-1β†’ran 𝐹 ↔ (𝐹:dom 𝐹⟢ran 𝐹 ∧ Fun ◑𝐹))
83, 6, 7mpbir2an 708 . . 3 𝐹:dom 𝐹–1-1β†’ran 𝐹
9 rinvbij.4a . . 3 𝐴 βŠ† dom 𝐹
10 f1ores 6847 . . 3 ((𝐹:dom 𝐹–1-1β†’ran 𝐹 ∧ 𝐴 βŠ† dom 𝐹) β†’ (𝐹 β†Ύ 𝐴):𝐴–1-1-ontoβ†’(𝐹 β€œ 𝐴))
118, 9, 10mp2an 689 . 2 (𝐹 β†Ύ 𝐴):𝐴–1-1-ontoβ†’(𝐹 β€œ 𝐴)
12 rinvbij.3a . . . 4 (𝐹 β€œ 𝐴) βŠ† 𝐡
13 rinvbij.3b . . . . . 6 (𝐹 β€œ 𝐡) βŠ† 𝐴
14 rinvbij.4b . . . . . . 7 𝐡 βŠ† dom 𝐹
15 funimass3 7055 . . . . . . 7 ((Fun 𝐹 ∧ 𝐡 βŠ† dom 𝐹) β†’ ((𝐹 β€œ 𝐡) βŠ† 𝐴 ↔ 𝐡 βŠ† (◑𝐹 β€œ 𝐴)))
161, 14, 15mp2an 689 . . . . . 6 ((𝐹 β€œ 𝐡) βŠ† 𝐴 ↔ 𝐡 βŠ† (◑𝐹 β€œ 𝐴))
1713, 16mpbi 229 . . . . 5 𝐡 βŠ† (◑𝐹 β€œ 𝐴)
184imaeq1i 6056 . . . . 5 (◑𝐹 β€œ 𝐴) = (𝐹 β€œ 𝐴)
1917, 18sseqtri 4018 . . . 4 𝐡 βŠ† (𝐹 β€œ 𝐴)
2012, 19eqssi 3998 . . 3 (𝐹 β€œ 𝐴) = 𝐡
21 f1oeq3 6823 . . 3 ((𝐹 β€œ 𝐴) = 𝐡 β†’ ((𝐹 β†Ύ 𝐴):𝐴–1-1-ontoβ†’(𝐹 β€œ 𝐴) ↔ (𝐹 β†Ύ 𝐴):𝐴–1-1-onto→𝐡))
2220, 21ax-mp 5 . 2 ((𝐹 β†Ύ 𝐴):𝐴–1-1-ontoβ†’(𝐹 β€œ 𝐴) ↔ (𝐹 β†Ύ 𝐴):𝐴–1-1-onto→𝐡)
2311, 22mpbi 229 1 (𝐹 β†Ύ 𝐴):𝐴–1-1-onto→𝐡
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   = wceq 1540   βŠ† wss 3948  β—‘ccnv 5675  dom cdm 5676  ran crn 5677   β†Ύ cres 5678   β€œ cima 5679  Fun wfun 6537  βŸΆwf 6539  β€“1-1β†’wf1 6540  β€“1-1-ontoβ†’wf1o 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  ballotlem7  33833
  Copyright terms: Public domain W3C validator