| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rinvf1o | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| rinvbij.1 | ⊢ Fun 𝐹 |
| rinvbij.2 | ⊢ ◡𝐹 = 𝐹 |
| rinvbij.3a | ⊢ (𝐹 “ 𝐴) ⊆ 𝐵 |
| rinvbij.3b | ⊢ (𝐹 “ 𝐵) ⊆ 𝐴 |
| rinvbij.4a | ⊢ 𝐴 ⊆ dom 𝐹 |
| rinvbij.4b | ⊢ 𝐵 ⊆ dom 𝐹 |
| Ref | Expression |
|---|---|
| rinvf1o | ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rinvbij.1 | . . . . 5 ⊢ Fun 𝐹 | |
| 2 | fdmrn 6746 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ 𝐹:dom 𝐹⟶ran 𝐹 |
| 4 | rinvbij.2 | . . . . . 6 ⊢ ◡𝐹 = 𝐹 | |
| 5 | 4 | funeqi 6566 | . . . . 5 ⊢ (Fun ◡𝐹 ↔ Fun 𝐹) |
| 6 | 1, 5 | mpbir 231 | . . . 4 ⊢ Fun ◡𝐹 |
| 7 | df-f1 6545 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1→ran 𝐹 ↔ (𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun ◡𝐹)) | |
| 8 | 3, 6, 7 | mpbir2an 711 | . . 3 ⊢ 𝐹:dom 𝐹–1-1→ran 𝐹 |
| 9 | rinvbij.4a | . . 3 ⊢ 𝐴 ⊆ dom 𝐹 | |
| 10 | f1ores 6841 | . . 3 ⊢ ((𝐹:dom 𝐹–1-1→ran 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) | |
| 11 | 8, 9, 10 | mp2an 692 | . 2 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) |
| 12 | rinvbij.3a | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ 𝐵 | |
| 13 | rinvbij.3b | . . . . . 6 ⊢ (𝐹 “ 𝐵) ⊆ 𝐴 | |
| 14 | rinvbij.4b | . . . . . . 7 ⊢ 𝐵 ⊆ dom 𝐹 | |
| 15 | funimass3 7053 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → ((𝐹 “ 𝐵) ⊆ 𝐴 ↔ 𝐵 ⊆ (◡𝐹 “ 𝐴))) | |
| 16 | 1, 14, 15 | mp2an 692 | . . . . . 6 ⊢ ((𝐹 “ 𝐵) ⊆ 𝐴 ↔ 𝐵 ⊆ (◡𝐹 “ 𝐴)) |
| 17 | 13, 16 | mpbi 230 | . . . . 5 ⊢ 𝐵 ⊆ (◡𝐹 “ 𝐴) |
| 18 | 4 | imaeq1i 6055 | . . . . 5 ⊢ (◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) |
| 19 | 17, 18 | sseqtri 4012 | . . . 4 ⊢ 𝐵 ⊆ (𝐹 “ 𝐴) |
| 20 | 12, 19 | eqssi 3980 | . . 3 ⊢ (𝐹 “ 𝐴) = 𝐵 |
| 21 | f1oeq3 6817 | . . 3 ⊢ ((𝐹 “ 𝐴) = 𝐵 → ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵)) | |
| 22 | 20, 21 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵) |
| 23 | 11, 22 | mpbi 230 | 1 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ⊆ wss 3931 ◡ccnv 5664 dom cdm 5665 ran crn 5666 ↾ cres 5667 “ cima 5668 Fun wfun 6534 ⟶wf 6536 –1-1→wf1 6537 –1-1-onto→wf1o 6539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 |
| This theorem is referenced by: ballotlem7 34472 |
| Copyright terms: Public domain | W3C validator |