Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rinvf1o | Structured version Visualization version GIF version |
Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
rinvbij.1 | ⊢ Fun 𝐹 |
rinvbij.2 | ⊢ ◡𝐹 = 𝐹 |
rinvbij.3a | ⊢ (𝐹 “ 𝐴) ⊆ 𝐵 |
rinvbij.3b | ⊢ (𝐹 “ 𝐵) ⊆ 𝐴 |
rinvbij.4a | ⊢ 𝐴 ⊆ dom 𝐹 |
rinvbij.4b | ⊢ 𝐵 ⊆ dom 𝐹 |
Ref | Expression |
---|---|
rinvf1o | ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rinvbij.1 | . . . . 5 ⊢ Fun 𝐹 | |
2 | fdmrn 6616 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ 𝐹:dom 𝐹⟶ran 𝐹 |
4 | rinvbij.2 | . . . . . 6 ⊢ ◡𝐹 = 𝐹 | |
5 | 4 | funeqi 6439 | . . . . 5 ⊢ (Fun ◡𝐹 ↔ Fun 𝐹) |
6 | 1, 5 | mpbir 230 | . . . 4 ⊢ Fun ◡𝐹 |
7 | df-f1 6423 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1→ran 𝐹 ↔ (𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | mpbir2an 707 | . . 3 ⊢ 𝐹:dom 𝐹–1-1→ran 𝐹 |
9 | rinvbij.4a | . . 3 ⊢ 𝐴 ⊆ dom 𝐹 | |
10 | f1ores 6714 | . . 3 ⊢ ((𝐹:dom 𝐹–1-1→ran 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) | |
11 | 8, 9, 10 | mp2an 688 | . 2 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) |
12 | rinvbij.3a | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ 𝐵 | |
13 | rinvbij.3b | . . . . . 6 ⊢ (𝐹 “ 𝐵) ⊆ 𝐴 | |
14 | rinvbij.4b | . . . . . . 7 ⊢ 𝐵 ⊆ dom 𝐹 | |
15 | funimass3 6913 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → ((𝐹 “ 𝐵) ⊆ 𝐴 ↔ 𝐵 ⊆ (◡𝐹 “ 𝐴))) | |
16 | 1, 14, 15 | mp2an 688 | . . . . . 6 ⊢ ((𝐹 “ 𝐵) ⊆ 𝐴 ↔ 𝐵 ⊆ (◡𝐹 “ 𝐴)) |
17 | 13, 16 | mpbi 229 | . . . . 5 ⊢ 𝐵 ⊆ (◡𝐹 “ 𝐴) |
18 | 4 | imaeq1i 5955 | . . . . 5 ⊢ (◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) |
19 | 17, 18 | sseqtri 3953 | . . . 4 ⊢ 𝐵 ⊆ (𝐹 “ 𝐴) |
20 | 12, 19 | eqssi 3933 | . . 3 ⊢ (𝐹 “ 𝐴) = 𝐵 |
21 | f1oeq3 6690 | . . 3 ⊢ ((𝐹 “ 𝐴) = 𝐵 → ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵)) | |
22 | 20, 21 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵) |
23 | 11, 22 | mpbi 229 | 1 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ⟶wf 6414 –1-1→wf1 6415 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: ballotlem7 32402 |
Copyright terms: Public domain | W3C validator |