Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rinvf1o Structured version   Visualization version   GIF version

Theorem rinvf1o 30378
Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
rinvbij.1 Fun 𝐹
rinvbij.2 𝐹 = 𝐹
rinvbij.3a (𝐹𝐴) ⊆ 𝐵
rinvbij.3b (𝐹𝐵) ⊆ 𝐴
rinvbij.4a 𝐴 ⊆ dom 𝐹
rinvbij.4b 𝐵 ⊆ dom 𝐹
Assertion
Ref Expression
rinvf1o (𝐹𝐴):𝐴1-1-onto𝐵

Proof of Theorem rinvf1o
StepHypRef Expression
1 rinvbij.1 . . . . 5 Fun 𝐹
2 fdmrn 6541 . . . . 5 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
31, 2mpbi 232 . . . 4 𝐹:dom 𝐹⟶ran 𝐹
4 rinvbij.2 . . . . . 6 𝐹 = 𝐹
54funeqi 6379 . . . . 5 (Fun 𝐹 ↔ Fun 𝐹)
61, 5mpbir 233 . . . 4 Fun 𝐹
7 df-f1 6363 . . . 4 (𝐹:dom 𝐹1-1→ran 𝐹 ↔ (𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun 𝐹))
83, 6, 7mpbir2an 709 . . 3 𝐹:dom 𝐹1-1→ran 𝐹
9 rinvbij.4a . . 3 𝐴 ⊆ dom 𝐹
10 f1ores 6632 . . 3 ((𝐹:dom 𝐹1-1→ran 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴))
118, 9, 10mp2an 690 . 2 (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴)
12 rinvbij.3a . . . 4 (𝐹𝐴) ⊆ 𝐵
13 rinvbij.3b . . . . . 6 (𝐹𝐵) ⊆ 𝐴
14 rinvbij.4b . . . . . . 7 𝐵 ⊆ dom 𝐹
15 funimass3 6827 . . . . . . 7 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → ((𝐹𝐵) ⊆ 𝐴𝐵 ⊆ (𝐹𝐴)))
161, 14, 15mp2an 690 . . . . . 6 ((𝐹𝐵) ⊆ 𝐴𝐵 ⊆ (𝐹𝐴))
1713, 16mpbi 232 . . . . 5 𝐵 ⊆ (𝐹𝐴)
184imaeq1i 5929 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
1917, 18sseqtri 4006 . . . 4 𝐵 ⊆ (𝐹𝐴)
2012, 19eqssi 3986 . . 3 (𝐹𝐴) = 𝐵
21 f1oeq3 6609 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴1-1-onto𝐵))
2220, 21ax-mp 5 . 2 ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴1-1-onto𝐵)
2311, 22mpbi 232 1 (𝐹𝐴):𝐴1-1-onto𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1536  wss 3939  ccnv 5557  dom cdm 5558  ran crn 5559  cres 5560  cima 5561  Fun wfun 6352  wf 6354  1-1wf1 6355  1-1-ontowf1o 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366
This theorem is referenced by:  ballotlem7  31797
  Copyright terms: Public domain W3C validator