![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rinvf1o | Structured version Visualization version GIF version |
Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
rinvbij.1 | β’ Fun πΉ |
rinvbij.2 | β’ β‘πΉ = πΉ |
rinvbij.3a | β’ (πΉ β π΄) β π΅ |
rinvbij.3b | β’ (πΉ β π΅) β π΄ |
rinvbij.4a | β’ π΄ β dom πΉ |
rinvbij.4b | β’ π΅ β dom πΉ |
Ref | Expression |
---|---|
rinvf1o | β’ (πΉ βΎ π΄):π΄β1-1-ontoβπ΅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rinvbij.1 | . . . . 5 β’ Fun πΉ | |
2 | fdmrn 6749 | . . . . 5 β’ (Fun πΉ β πΉ:dom πΉβΆran πΉ) | |
3 | 1, 2 | mpbi 229 | . . . 4 β’ πΉ:dom πΉβΆran πΉ |
4 | rinvbij.2 | . . . . . 6 β’ β‘πΉ = πΉ | |
5 | 4 | funeqi 6569 | . . . . 5 β’ (Fun β‘πΉ β Fun πΉ) |
6 | 1, 5 | mpbir 230 | . . . 4 β’ Fun β‘πΉ |
7 | df-f1 6548 | . . . 4 β’ (πΉ:dom πΉβ1-1βran πΉ β (πΉ:dom πΉβΆran πΉ β§ Fun β‘πΉ)) | |
8 | 3, 6, 7 | mpbir2an 708 | . . 3 β’ πΉ:dom πΉβ1-1βran πΉ |
9 | rinvbij.4a | . . 3 β’ π΄ β dom πΉ | |
10 | f1ores 6847 | . . 3 β’ ((πΉ:dom πΉβ1-1βran πΉ β§ π΄ β dom πΉ) β (πΉ βΎ π΄):π΄β1-1-ontoβ(πΉ β π΄)) | |
11 | 8, 9, 10 | mp2an 689 | . 2 β’ (πΉ βΎ π΄):π΄β1-1-ontoβ(πΉ β π΄) |
12 | rinvbij.3a | . . . 4 β’ (πΉ β π΄) β π΅ | |
13 | rinvbij.3b | . . . . . 6 β’ (πΉ β π΅) β π΄ | |
14 | rinvbij.4b | . . . . . . 7 β’ π΅ β dom πΉ | |
15 | funimass3 7055 | . . . . . . 7 β’ ((Fun πΉ β§ π΅ β dom πΉ) β ((πΉ β π΅) β π΄ β π΅ β (β‘πΉ β π΄))) | |
16 | 1, 14, 15 | mp2an 689 | . . . . . 6 β’ ((πΉ β π΅) β π΄ β π΅ β (β‘πΉ β π΄)) |
17 | 13, 16 | mpbi 229 | . . . . 5 β’ π΅ β (β‘πΉ β π΄) |
18 | 4 | imaeq1i 6056 | . . . . 5 β’ (β‘πΉ β π΄) = (πΉ β π΄) |
19 | 17, 18 | sseqtri 4018 | . . . 4 β’ π΅ β (πΉ β π΄) |
20 | 12, 19 | eqssi 3998 | . . 3 β’ (πΉ β π΄) = π΅ |
21 | f1oeq3 6823 | . . 3 β’ ((πΉ β π΄) = π΅ β ((πΉ βΎ π΄):π΄β1-1-ontoβ(πΉ β π΄) β (πΉ βΎ π΄):π΄β1-1-ontoβπ΅)) | |
22 | 20, 21 | ax-mp 5 | . 2 β’ ((πΉ βΎ π΄):π΄β1-1-ontoβ(πΉ β π΄) β (πΉ βΎ π΄):π΄β1-1-ontoβπ΅) |
23 | 11, 22 | mpbi 229 | 1 β’ (πΉ βΎ π΄):π΄β1-1-ontoβπ΅ |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1540 β wss 3948 β‘ccnv 5675 dom cdm 5676 ran crn 5677 βΎ cres 5678 β cima 5679 Fun wfun 6537 βΆwf 6539 β1-1βwf1 6540 β1-1-ontoβwf1o 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: ballotlem7 33833 |
Copyright terms: Public domain | W3C validator |