Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rinvf1o Structured version   Visualization version   GIF version

Theorem rinvf1o 32527
Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
rinvbij.1 Fun 𝐹
rinvbij.2 𝐹 = 𝐹
rinvbij.3a (𝐹𝐴) ⊆ 𝐵
rinvbij.3b (𝐹𝐵) ⊆ 𝐴
rinvbij.4a 𝐴 ⊆ dom 𝐹
rinvbij.4b 𝐵 ⊆ dom 𝐹
Assertion
Ref Expression
rinvf1o (𝐹𝐴):𝐴1-1-onto𝐵

Proof of Theorem rinvf1o
StepHypRef Expression
1 rinvbij.1 . . . . 5 Fun 𝐹
2 fdmrn 6701 . . . . 5 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
31, 2mpbi 230 . . . 4 𝐹:dom 𝐹⟶ran 𝐹
4 rinvbij.2 . . . . . 6 𝐹 = 𝐹
54funeqi 6521 . . . . 5 (Fun 𝐹 ↔ Fun 𝐹)
61, 5mpbir 231 . . . 4 Fun 𝐹
7 df-f1 6504 . . . 4 (𝐹:dom 𝐹1-1→ran 𝐹 ↔ (𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun 𝐹))
83, 6, 7mpbir2an 711 . . 3 𝐹:dom 𝐹1-1→ran 𝐹
9 rinvbij.4a . . 3 𝐴 ⊆ dom 𝐹
10 f1ores 6796 . . 3 ((𝐹:dom 𝐹1-1→ran 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴))
118, 9, 10mp2an 692 . 2 (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴)
12 rinvbij.3a . . . 4 (𝐹𝐴) ⊆ 𝐵
13 rinvbij.3b . . . . . 6 (𝐹𝐵) ⊆ 𝐴
14 rinvbij.4b . . . . . . 7 𝐵 ⊆ dom 𝐹
15 funimass3 7008 . . . . . . 7 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → ((𝐹𝐵) ⊆ 𝐴𝐵 ⊆ (𝐹𝐴)))
161, 14, 15mp2an 692 . . . . . 6 ((𝐹𝐵) ⊆ 𝐴𝐵 ⊆ (𝐹𝐴))
1713, 16mpbi 230 . . . . 5 𝐵 ⊆ (𝐹𝐴)
184imaeq1i 6017 . . . . 5 (𝐹𝐴) = (𝐹𝐴)
1917, 18sseqtri 3992 . . . 4 𝐵 ⊆ (𝐹𝐴)
2012, 19eqssi 3960 . . 3 (𝐹𝐴) = 𝐵
21 f1oeq3 6772 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴1-1-onto𝐵))
2220, 21ax-mp 5 . 2 ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴1-1-onto𝐵)
2311, 22mpbi 230 1 (𝐹𝐴):𝐴1-1-onto𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wss 3911  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  Fun wfun 6493  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507
This theorem is referenced by:  ballotlem7  34500
  Copyright terms: Public domain W3C validator