![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rinvf1o | Structured version Visualization version GIF version |
Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
rinvbij.1 | ⊢ Fun 𝐹 |
rinvbij.2 | ⊢ ◡𝐹 = 𝐹 |
rinvbij.3a | ⊢ (𝐹 “ 𝐴) ⊆ 𝐵 |
rinvbij.3b | ⊢ (𝐹 “ 𝐵) ⊆ 𝐴 |
rinvbij.4a | ⊢ 𝐴 ⊆ dom 𝐹 |
rinvbij.4b | ⊢ 𝐵 ⊆ dom 𝐹 |
Ref | Expression |
---|---|
rinvf1o | ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rinvbij.1 | . . . . 5 ⊢ Fun 𝐹 | |
2 | fdmrn 6778 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹⟶ran 𝐹) | |
3 | 1, 2 | mpbi 230 | . . . 4 ⊢ 𝐹:dom 𝐹⟶ran 𝐹 |
4 | rinvbij.2 | . . . . . 6 ⊢ ◡𝐹 = 𝐹 | |
5 | 4 | funeqi 6598 | . . . . 5 ⊢ (Fun ◡𝐹 ↔ Fun 𝐹) |
6 | 1, 5 | mpbir 231 | . . . 4 ⊢ Fun ◡𝐹 |
7 | df-f1 6577 | . . . 4 ⊢ (𝐹:dom 𝐹–1-1→ran 𝐹 ↔ (𝐹:dom 𝐹⟶ran 𝐹 ∧ Fun ◡𝐹)) | |
8 | 3, 6, 7 | mpbir2an 710 | . . 3 ⊢ 𝐹:dom 𝐹–1-1→ran 𝐹 |
9 | rinvbij.4a | . . 3 ⊢ 𝐴 ⊆ dom 𝐹 | |
10 | f1ores 6875 | . . 3 ⊢ ((𝐹:dom 𝐹–1-1→ran 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) | |
11 | 8, 9, 10 | mp2an 691 | . 2 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) |
12 | rinvbij.3a | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ 𝐵 | |
13 | rinvbij.3b | . . . . . 6 ⊢ (𝐹 “ 𝐵) ⊆ 𝐴 | |
14 | rinvbij.4b | . . . . . . 7 ⊢ 𝐵 ⊆ dom 𝐹 | |
15 | funimass3 7085 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ⊆ dom 𝐹) → ((𝐹 “ 𝐵) ⊆ 𝐴 ↔ 𝐵 ⊆ (◡𝐹 “ 𝐴))) | |
16 | 1, 14, 15 | mp2an 691 | . . . . . 6 ⊢ ((𝐹 “ 𝐵) ⊆ 𝐴 ↔ 𝐵 ⊆ (◡𝐹 “ 𝐴)) |
17 | 13, 16 | mpbi 230 | . . . . 5 ⊢ 𝐵 ⊆ (◡𝐹 “ 𝐴) |
18 | 4 | imaeq1i 6085 | . . . . 5 ⊢ (◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) |
19 | 17, 18 | sseqtri 4039 | . . . 4 ⊢ 𝐵 ⊆ (𝐹 “ 𝐴) |
20 | 12, 19 | eqssi 4019 | . . 3 ⊢ (𝐹 “ 𝐴) = 𝐵 |
21 | f1oeq3 6851 | . . 3 ⊢ ((𝐹 “ 𝐴) = 𝐵 → ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵)) | |
22 | 20, 21 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵) |
23 | 11, 22 | mpbi 230 | 1 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊆ wss 3970 ◡ccnv 5698 dom cdm 5699 ran crn 5700 ↾ cres 5701 “ cima 5702 Fun wfun 6566 ⟶wf 6568 –1-1→wf1 6569 –1-1-onto→wf1o 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 |
This theorem is referenced by: ballotlem7 34492 |
Copyright terms: Public domain | W3C validator |