| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version | ||
| Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6776, dffo3 7074, dffo4 7075, and dffo5 7076.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 18050. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 6509 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 6506 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5639 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1540 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: foeq1 6768 foeq2 6769 foeq3 6770 nffo 6771 fof 6772 forn 6775 dffo2 6776 dffn4 6778 fores 6782 dff1o2 6805 dff1o3 6806 foimacnv 6817 foun 6818 rescnvimafod 7045 fconst5 7180 dff1o6 7250 nvof1o 7255 f1oweALT 7951 fo1st 7988 fo2nd 7989 tposfo2 8228 fodomr 9092 f1finf1o 9216 f1finf1oOLD 9217 unfilem2 9255 fodomfir 9279 brwdom2 9526 harwdom 9544 infpwfien 10015 alephiso 10051 brdom3 10481 brdom5 10482 brdom4 10483 iunfo 10492 qnnen 16181 isfull2 17875 smndex2dnrinv 18842 odf1o2 19503 cygctb 19822 qtopss 23602 qtopomap 23605 qtopcmap 23606 reeff1o 26357 efifo 26456 bdayfo 27589 onsiso 28169 om2noseqfo 28192 bdayn0sf1o 28259 pjfoi 31632 lvecendof1f1o 33629 fobigcup 35888 tfsconcatfo 43332 modelaxreplem1 44968 fundcmpsurinjlem2 47397 fargshiftfo 47440 |
| Copyright terms: Public domain | W3C validator |