| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version | ||
| Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6744, dffo3 7040, dffo4 7041, and dffo5 7042.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 18013. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 6484 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 6481 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5624 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1540 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: foeq1 6736 foeq2 6737 foeq3 6738 nffo 6739 fof 6740 forn 6743 dffo2 6744 dffn4 6746 fores 6750 dff1o2 6773 dff1o3 6774 foimacnv 6785 foun 6786 rescnvimafod 7011 fconst5 7146 dff1o6 7216 nvof1o 7221 f1oweALT 7914 fo1st 7951 fo2nd 7952 tposfo2 8189 fodomr 9052 f1finf1o 9174 f1finf1oOLD 9175 unfilem2 9213 fodomfir 9237 brwdom2 9484 harwdom 9502 infpwfien 9975 alephiso 10011 brdom3 10441 brdom5 10442 brdom4 10443 iunfo 10452 qnnen 16140 isfull2 17838 smndex2dnrinv 18807 odf1o2 19470 cygctb 19789 qtopss 23618 qtopomap 23621 qtopcmap 23622 reeff1o 26373 efifo 26472 bdayfo 27605 onsiso 28192 om2noseqfo 28215 bdayn0sf1o 28282 pjfoi 31665 lvecendof1f1o 33605 fobigcup 35873 tfsconcatfo 43316 modelaxreplem1 44952 fundcmpsurinjlem2 47384 fargshiftfo 47427 |
| Copyright terms: Public domain | W3C validator |