| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version | ||
| Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6739, dffo3 7035, dffo4 7036, and dffo5 7037.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 17992. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 6479 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 6476 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5617 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1541 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: foeq1 6731 foeq2 6732 foeq3 6733 nffo 6734 fof 6735 forn 6738 dffo2 6739 dffn4 6741 fores 6745 dff1o2 6768 dff1o3 6769 foimacnv 6780 foun 6781 rescnvimafod 7006 fconst5 7140 dff1o6 7209 nvof1o 7214 f1oweALT 7904 fo1st 7941 fo2nd 7942 tposfo2 8179 fodomr 9041 f1finf1o 9157 unfilem2 9190 fodomfir 9212 brwdom2 9459 harwdom 9477 infpwfien 9950 alephiso 9986 brdom3 10416 brdom5 10417 brdom4 10418 iunfo 10427 qnnen 16119 isfull2 17817 smndex2dnrinv 18820 odf1o2 19483 cygctb 19802 qtopss 23628 qtopomap 23631 qtopcmap 23632 reeff1o 26382 efifo 26481 bdayfo 27614 onsiso 28203 om2noseqfo 28226 bdayn0sf1o 28293 pjfoi 31678 lvecendof1f1o 33641 fobigcup 35933 tfsconcatfo 43375 modelaxreplem1 45010 fundcmpsurinjlem2 47429 fargshiftfo 47472 |
| Copyright terms: Public domain | W3C validator |