![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version |
Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6838, dffo3 7136, dffo4 7137, and dffo5 7138.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 18155. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 6571 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 6568 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5701 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1537 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: foeq1 6830 foeq2 6831 foeq3 6832 nffo 6833 fof 6834 forn 6837 dffo2 6838 dffn4 6840 fores 6844 dff1o2 6867 dff1o3 6868 foimacnv 6879 foun 6880 rescnvimafod 7107 fconst5 7243 dff1o6 7311 nvof1o 7316 f1oweALT 8013 fo1st 8050 fo2nd 8051 tposfo2 8290 fodomr 9194 f1finf1o 9333 f1finf1oOLD 9334 unfilem2 9372 fodomfir 9396 brwdom2 9642 harwdom 9660 infpwfien 10131 alephiso 10167 brdom3 10597 brdom5 10598 brdom4 10599 iunfo 10608 qnnen 16261 isfull2 17978 smndex2dnrinv 18950 odf1o2 19615 cygctb 19934 qtopss 23744 qtopomap 23747 qtopcmap 23748 reeff1o 26509 efifo 26607 bdayfo 27740 om2noseqfo 28322 pjfoi 31735 lvecendof1f1o 33646 fobigcup 35864 tfsconcatfo 43305 fundcmpsurinjlem2 47273 fargshiftfo 47316 |
Copyright terms: Public domain | W3C validator |