![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version |
Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6824, dffo3 7121, dffo4 7122, and dffo5 7123.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 18141. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 6560 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 6557 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5689 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1536 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: foeq1 6816 foeq2 6817 foeq3 6818 nffo 6819 fof 6820 forn 6823 dffo2 6824 dffn4 6826 fores 6830 dff1o2 6853 dff1o3 6854 foimacnv 6865 foun 6866 rescnvimafod 7092 fconst5 7225 dff1o6 7294 nvof1o 7299 f1oweALT 7995 fo1st 8032 fo2nd 8033 tposfo2 8272 fodomr 9166 f1finf1o 9302 f1finf1oOLD 9303 unfilem2 9341 fodomfir 9365 brwdom2 9610 harwdom 9628 infpwfien 10099 alephiso 10135 brdom3 10565 brdom5 10566 brdom4 10567 iunfo 10576 qnnen 16245 isfull2 17964 smndex2dnrinv 18940 odf1o2 19605 cygctb 19924 qtopss 23738 qtopomap 23741 qtopcmap 23742 reeff1o 26505 efifo 26603 bdayfo 27736 om2noseqfo 28318 pjfoi 31731 lvecendof1f1o 33660 fobigcup 35881 tfsconcatfo 43332 modelaxreplem1 44942 fundcmpsurinjlem2 47323 fargshiftfo 47366 |
Copyright terms: Public domain | W3C validator |