| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version | ||
| Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6744, dffo3 7041, dffo4 7042, and dffo5 7043.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 17997. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 6484 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 6481 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5620 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1541 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: foeq1 6736 foeq2 6737 foeq3 6738 nffo 6739 fof 6740 forn 6743 dffo2 6744 dffn4 6746 fores 6750 dff1o2 6773 dff1o3 6774 foimacnv 6785 foun 6786 rescnvimafod 7012 fconst5 7146 dff1o6 7215 nvof1o 7220 f1oweALT 7910 fo1st 7947 fo2nd 7948 tposfo2 8185 fodomr 9048 f1finf1o 9164 unfilem2 9197 fodomfir 9219 brwdom2 9466 harwdom 9484 infpwfien 9960 alephiso 9996 brdom3 10426 brdom5 10427 brdom4 10428 iunfo 10437 qnnen 16124 isfull2 17822 smndex2dnrinv 18825 odf1o2 19487 cygctb 19806 qtopss 23631 qtopomap 23634 qtopcmap 23635 reeff1o 26385 efifo 26484 bdayfo 27617 onsiso 28206 om2noseqfo 28229 bdayn0sf1o 28296 pjfoi 31685 lvecendof1f1o 33667 fobigcup 35963 tfsconcatfo 43460 modelaxreplem1 45095 fundcmpsurinjlem2 47523 fargshiftfo 47566 |
| Copyright terms: Public domain | W3C validator |