Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version |
Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6701, dffo3 6987, dffo4 6988, and dffo5 6989.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 17812. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 6435 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 6432 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5591 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1539 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 396 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 205 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: foeq1 6693 foeq2 6694 foeq3 6695 nffo 6696 fof 6697 forn 6700 dffo2 6701 dffn4 6703 fores 6707 dff1o2 6730 dff1o3 6731 foimacnv 6742 foun 6743 rescnvimafod 6960 fconst5 7090 dff1o6 7156 nvof1o 7161 f1oweALT 7824 fo1st 7860 fo2nd 7861 tposfo2 8074 fodomr 8924 f1finf1o 9055 unfilem2 9088 brwdom2 9341 harwdom 9359 infpwfien 9827 alephiso 9863 brdom3 10293 brdom5 10294 brdom4 10295 iunfo 10304 qnnen 15931 isfull2 17636 smndex2dnrinv 18563 odf1o2 19187 cygctb 19502 qtopss 22875 qtopomap 22878 qtopcmap 22879 reeff1o 25615 efifo 25712 pjfoi 30074 bdayfo 33889 fobigcup 34211 fundcmpsurinjlem2 44862 fargshiftfo 44905 |
Copyright terms: Public domain | W3C validator |