| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version | ||
| Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6793, dffo3 7091, dffo4 7092, and dffo5 7093.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 18099. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cF | . . 3 class 𝐹 | |
| 4 | 1, 2, 3 | wfo 6528 | . 2 wff 𝐹:𝐴–onto→𝐵 |
| 5 | 3, 1 | wfn 6525 | . . 3 wff 𝐹 Fn 𝐴 |
| 6 | 3 | crn 5655 | . . . 4 class ran 𝐹 |
| 7 | 6, 2 | wceq 1540 | . . 3 wff ran 𝐹 = 𝐵 |
| 8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
| 9 | 4, 8 | wb 206 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: foeq1 6785 foeq2 6786 foeq3 6787 nffo 6788 fof 6789 forn 6792 dffo2 6793 dffn4 6795 fores 6799 dff1o2 6822 dff1o3 6823 foimacnv 6834 foun 6835 rescnvimafod 7062 fconst5 7197 dff1o6 7267 nvof1o 7272 f1oweALT 7969 fo1st 8006 fo2nd 8007 tposfo2 8246 fodomr 9140 f1finf1o 9275 f1finf1oOLD 9276 unfilem2 9314 fodomfir 9338 brwdom2 9585 harwdom 9603 infpwfien 10074 alephiso 10110 brdom3 10540 brdom5 10541 brdom4 10542 iunfo 10551 qnnen 16229 isfull2 17924 smndex2dnrinv 18891 odf1o2 19552 cygctb 19871 qtopss 23651 qtopomap 23654 qtopcmap 23655 reeff1o 26407 efifo 26506 bdayfo 27639 om2noseqfo 28221 pjfoi 31630 lvecendof1f1o 33619 fobigcup 35864 tfsconcatfo 43314 modelaxreplem1 44951 fundcmpsurinjlem2 47361 fargshiftfo 47404 |
| Copyright terms: Public domain | W3C validator |