Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version |
Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6676, dffo3 6960, dffo4 6961, and dffo5 6962.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 17719. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 6416 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 6413 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5581 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1539 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 395 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 205 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: foeq1 6668 foeq2 6669 foeq3 6670 nffo 6671 fof 6672 forn 6675 dffo2 6676 dffn4 6678 fores 6682 dff1o2 6705 dff1o3 6706 foimacnv 6717 foun 6718 rescnvimafod 6933 fconst5 7063 dff1o6 7128 nvof1o 7133 f1oweALT 7788 fo1st 7824 fo2nd 7825 tposfo2 8036 fodomr 8864 f1finf1o 8975 unfilem2 9009 brwdom2 9262 harwdom 9280 infpwfien 9749 alephiso 9785 brdom3 10215 brdom5 10216 brdom4 10217 iunfo 10226 qnnen 15850 isfull2 17543 smndex2dnrinv 18469 odf1o2 19093 cygctb 19408 qtopss 22774 qtopomap 22777 qtopcmap 22778 reeff1o 25511 efifo 25608 pjfoi 29966 bdayfo 33807 fobigcup 34129 fundcmpsurinjlem2 44739 fargshiftfo 44782 |
Copyright terms: Public domain | W3C validator |