Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version |
Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6743, dffo3 7034, dffo4 7035, and dffo5 7036.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 17900. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 6477 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 6474 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5621 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1540 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 396 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 205 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: foeq1 6735 foeq2 6736 foeq3 6737 nffo 6738 fof 6739 forn 6742 dffo2 6743 dffn4 6745 fores 6749 dff1o2 6772 dff1o3 6773 foimacnv 6784 foun 6785 rescnvimafod 7007 fconst5 7137 dff1o6 7203 nvof1o 7208 f1oweALT 7883 fo1st 7919 fo2nd 7920 tposfo2 8135 fodomr 8993 f1finf1o 9136 f1finf1oOLD 9137 unfilem2 9176 brwdom2 9430 harwdom 9448 infpwfien 9919 alephiso 9955 brdom3 10385 brdom5 10386 brdom4 10387 iunfo 10396 qnnen 16021 isfull2 17724 smndex2dnrinv 18650 odf1o2 19274 cygctb 19588 qtopss 22972 qtopomap 22975 qtopcmap 22976 reeff1o 25712 efifo 25809 bdayfo 26931 pjfoi 30353 fobigcup 34298 fundcmpsurinjlem2 45210 fargshiftfo 45253 |
Copyright terms: Public domain | W3C validator |