![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fo | Structured version Visualization version GIF version |
Description: Define an onto function.
Definition 6.15(4) of [TakeutiZaring] p.
27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 6469, dffo3 6738, dffo4 6739, and dffo5 6740.
An onto function is also called a "surjection" or a "surjective function", 𝐹:𝐴–onto→𝐵 can be read as "𝐹 is a surjection from 𝐴 onto 𝐵". Surjections are precisely the epimorphisms in the category SetCat of sets and set functions, see setcepi 17181. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 6230 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 6227 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 5451 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1525 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 396 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 207 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: foeq1 6461 foeq2 6462 foeq3 6463 nffo 6464 fof 6465 forn 6468 dffo2 6469 dffn4 6471 fores 6475 dff1o2 6495 dff1o3 6496 foimacnv 6507 foun 6508 fconst5 6842 dff1o6 6904 nvof1o 6909 f1oweALT 7536 fo1st 7572 fo2nd 7573 tposfo2 7773 fodomr 8522 f1finf1o 8598 unfilem2 8636 brwdom2 8890 harwdom 8907 infpwfien 9341 alephiso 9377 brdom3 9803 brdom5 9804 brdom4 9805 iunfo 9814 qnnen 15403 isfull2 17014 odf1o2 18432 cygctb 18737 qtopss 22011 qtopomap 22014 qtopcmap 22015 reeff1o 24722 efifo 24816 pjfoi 29167 bdayfo 32793 fobigcup 32972 fargshiftfo 43106 |
Copyright terms: Public domain | W3C validator |