![]() |
Metamath
Proof Explorer Theorem List (p. 328 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | wrdsplex 32701* | Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.) |
β’ ((π β Word π β§ π β (0...(β―βπ))) β βπ£ β Word ππ = ((π βΎ (0..^π)) ++ π£)) | ||
Theorem | pfx1s2 32702 | The prefix of length 1 of a length 2 word. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ ((π΄ β π β§ π΅ β π) β (β¨βπ΄π΅ββ© prefix 1) = β¨βπ΄ββ©) | ||
Theorem | pfxrn2 32703 | The range of a prefix of a word is a subset of the range of that word. Stronger version of pfxrn 14662. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
β’ ((π β Word π β§ πΏ β (0...(β―βπ))) β ran (π prefix πΏ) β ran π) | ||
Theorem | pfxrn3 32704 | Express the range of a prefix of a word. Stronger version of pfxrn2 32703. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
β’ ((π β Word π β§ πΏ β (0...(β―βπ))) β ran (π prefix πΏ) = (π β (0..^πΏ))) | ||
Theorem | pfxf1 32705 | Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
β’ (π β π β Word π) & β’ (π β π:dom πβ1-1βπ) & β’ (π β πΏ β (0...(β―βπ))) β β’ (π β (π prefix πΏ):dom (π prefix πΏ)β1-1βπ) | ||
Theorem | s1f1 32706 | Conditions for a length 1 string to be a one-to-one function. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
β’ (π β πΌ β π·) β β’ (π β β¨βπΌββ©:dom β¨βπΌββ©β1-1βπ·) | ||
Theorem | s2rn 32707 | Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ (π β πΌ β π·) & β’ (π β π½ β π·) β β’ (π β ran β¨βπΌπ½ββ© = {πΌ, π½}) | ||
Theorem | s2f1 32708 | Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΌ β π½) β β’ (π β β¨βπΌπ½ββ©:dom β¨βπΌπ½ββ©β1-1βπ·) | ||
Theorem | s3rn 32709 | Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΎ β π·) β β’ (π β ran β¨βπΌπ½πΎββ© = {πΌ, π½, πΎ}) | ||
Theorem | s3f1 32710 | Conditions for a length 3 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΎ β π·) & β’ (π β πΌ β π½) & β’ (π β π½ β πΎ) & β’ (π β πΎ β πΌ) β β’ (π β β¨βπΌπ½πΎββ©:dom β¨βπΌπ½πΎββ©β1-1βπ·) | ||
Theorem | s3clhash 32711 | Closure of the words of length 3 in a preimage using the hash function. (Contributed by Thierry Arnoux, 27-Sep-2023.) |
β’ β¨βπΌπ½πΎββ© β (β‘β― β {3}) | ||
Theorem | ccatf1 32712 | Conditions for a concatenation to be injective. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
β’ (π β π β π) & β’ (π β π΄ β Word π) & β’ (π β π΅ β Word π) & β’ (π β π΄:dom π΄β1-1βπ) & β’ (π β π΅:dom π΅β1-1βπ) & β’ (π β (ran π΄ β© ran π΅) = β ) β β’ (π β (π΄ ++ π΅):dom (π΄ ++ π΅)β1-1βπ) | ||
Theorem | pfxlsw2ccat 32713 | Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
β’ π = (β―βπ) β β’ ((π β Word π β§ 2 β€ π) β π = ((π prefix (π β 2)) ++ β¨β(πβ(π β 2))(πβ(π β 1))ββ©)) | ||
Theorem | wrdt2ind 32714* | Perform an induction over the structure of a word of even length. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
β’ (π₯ = β β (π β π)) & β’ (π₯ = π¦ β (π β π)) & β’ (π₯ = (π¦ ++ β¨βππββ©) β (π β π)) & β’ (π₯ = π΄ β (π β π)) & β’ π & β’ ((π¦ β Word π΅ β§ π β π΅ β§ π β π΅) β (π β π)) β β’ ((π΄ β Word π΅ β§ 2 β₯ (β―βπ΄)) β π) | ||
Theorem | swrdrn2 32715 | The range of a subword is a subset of the range of that word. Stronger version of swrdrn 14629. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
β’ ((π β Word π β§ π β (0...π) β§ π β (0...(β―βπ))) β ran (π substr β¨π, πβ©) β ran π) | ||
Theorem | swrdrn3 32716 | Express the range of a subword. Stronger version of swrdrn2 32715. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
β’ ((π β Word π β§ π β (0...π) β§ π β (0...(β―βπ))) β ran (π substr β¨π, πβ©) = (π β (π..^π))) | ||
Theorem | swrdf1 32717 | Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
β’ (π β π β Word π·) & β’ (π β π β (0...π)) & β’ (π β π β (0...(β―βπ))) & β’ (π β π:dom πβ1-1βπ·) β β’ (π β (π substr β¨π, πβ©):dom (π substr β¨π, πβ©)β1-1βπ·) | ||
Theorem | swrdrndisj 32718 | Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
β’ (π β π β Word π·) & β’ (π β π β (0...π)) & β’ (π β π β (0...(β―βπ))) & β’ (π β π:dom πβ1-1βπ·) & β’ (π β π β (π...π)) & β’ (π β π β (π...(β―βπ))) β β’ (π β (ran (π substr β¨π, πβ©) β© ran (π substr β¨π, πβ©)) = β ) | ||
Theorem | splfv3 32719 | Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.) |
β’ (π β π β Word π΄) & β’ (π β πΉ β (0...π)) & β’ (π β π β (0...(β―βπ))) & β’ (π β π β Word π΄) & β’ (π β π β (0..^((β―βπ) β π))) & β’ (π β πΎ = (πΉ + (β―βπ ))) β β’ (π β ((π splice β¨πΉ, π, π β©)β(π + πΎ)) = (πβ(π + π))) | ||
Theorem | 1cshid 32720 | Cyclically shifting a single letter word keeps it unchanged. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
β’ ((π β Word π β§ π β β€ β§ (β―βπ) = 1) β (π cyclShift π) = π) | ||
Theorem | cshw1s2 32721 | Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ ((π΄ β π β§ π΅ β π) β (β¨βπ΄π΅ββ© cyclShift 1) = β¨βπ΅π΄ββ©) | ||
Theorem | cshwrnid 32722 | Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ ((π β Word π β§ π β β€) β ran (π cyclShift π) = ran π) | ||
Theorem | cshf1o 32723 | Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023.) |
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β (π cyclShift π):dom πβ1-1-ontoβran π) | ||
Theorem | ressplusf 32724 | The group operation function +π of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
β’ π΅ = (BaseβπΊ) & β’ π» = (πΊ βΎs π΄) & ⒠⨣ = (+gβπΊ) & ⒠⨣ Fn (π΅ Γ π΅) & β’ π΄ β π΅ β β’ (+πβπ») = ( ⨣ βΎ (π΄ Γ π΄)) | ||
Theorem | ressnm 32725 | The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
β’ π» = (πΊ βΎs π΄) & β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ π = (normβπΊ) β β’ ((πΊ β Mnd β§ 0 β π΄ β§ π΄ β π΅) β (π βΎ π΄) = (normβπ»)) | ||
Theorem | abvpropd2 32726 | Weaker version of abvpropd 20721. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
β’ (π β (BaseβπΎ) = (BaseβπΏ)) & β’ (π β (+gβπΎ) = (+gβπΏ)) & β’ (π β (.rβπΎ) = (.rβπΏ)) β β’ (π β (AbsValβπΎ) = (AbsValβπΏ)) | ||
Theorem | oppgle 32727 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
β’ π = (oppgβπ ) & β’ β€ = (leβπ ) β β’ β€ = (leβπ) | ||
Theorem | oppgleOLD 32728 | Obsolete version of oppgle 32727 as of 27-Oct-2024. less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ π = (oppgβπ ) & β’ β€ = (leβπ ) β β’ β€ = (leβπ) | ||
Theorem | oppglt 32729 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
β’ π = (oppgβπ ) & β’ < = (ltβπ ) β β’ (π β π β < = (ltβπ)) | ||
Theorem | ressprs 32730 | The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
β’ π΅ = (BaseβπΎ) β β’ ((πΎ β Proset β§ π΄ β π΅) β (πΎ βΎs π΄) β Proset ) | ||
Theorem | oduprs 32731 | Being a proset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
β’ π· = (ODualβπΎ) β β’ (πΎ β Proset β π· β Proset ) | ||
Theorem | posrasymb 32732 | A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = ((leβπΎ) β© (π΅ Γ π΅)) β β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β ((π β€ π β§ π β€ π) β π = π)) | ||
Theorem | resspos 32733 | The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
β’ ((πΉ β Poset β§ π΄ β π) β (πΉ βΎs π΄) β Poset) | ||
Theorem | resstos 32734 | The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
β’ ((πΉ β Toset β§ π΄ β π) β (πΉ βΎs π΄) β Toset) | ||
Theorem | odutos 32735 | Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
β’ π· = (ODualβπΎ) β β’ (πΎ β Toset β π· β Toset) | ||
Theorem | tlt2 32736 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) β β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π β€ π β¨ π < π)) | ||
Theorem | tlt3 32737 | In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) β β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π = π β¨ π < π β¨ π < π)) | ||
Theorem | trleile 32738 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = ((leβπΎ) β© (π΅ Γ π΅)) β β’ ((πΎ β Toset β§ π β π΅ β§ π β π΅) β (π β€ π β¨ π β€ π)) | ||
Theorem | toslublem 32739* | Lemma for toslub 32740 and xrsclat 32778. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ (π β πΎ β Toset) & β’ (π β π΄ β π΅) & β’ β€ = (leβπΎ) β β’ ((π β§ π β π΅) β ((βπ β π΄ π β€ π β§ βπ β π΅ (βπ β π΄ π β€ π β π β€ π)) β (βπ β π΄ Β¬ π < π β§ βπ β π΅ (π < π β βπ β π΄ π < π)))) | ||
Theorem | toslub 32740 | In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(π΄, π΅, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ (π β πΎ β Toset) & β’ (π β π΄ β π΅) β β’ (π β ((lubβπΎ)βπ΄) = sup(π΄, π΅, < )) | ||
Theorem | tosglblem 32741* | Lemma for tosglb 32742 and xrsclat 32778. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ (π β πΎ β Toset) & β’ (π β π΄ β π΅) & β’ β€ = (leβπΎ) β β’ ((π β§ π β π΅) β ((βπ β π΄ π β€ π β§ βπ β π΅ (βπ β π΄ π β€ π β π β€ π)) β (βπ β π΄ Β¬ πβ‘ < π β§ βπ β π΅ (πβ‘ < π β βπ β π΄ πβ‘ < π)))) | ||
Theorem | tosglb 32742 | Same theorem as toslub 32740, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ (π β πΎ β Toset) & β’ (π β π΄ β π΅) β β’ (π β ((glbβπΎ)βπ΄) = inf(π΄, π΅, < )) | ||
Theorem | clatp0cl 32743 | The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ 0 = (0.βπ) β β’ (π β CLat β 0 β π΅) | ||
Theorem | clatp1cl 32744 | The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
β’ π΅ = (Baseβπ) & β’ 1 = (1.βπ) β β’ (π β CLat β 1 β π΅) | ||
Syntax | cmnt 32745 | Extend class notation with monotone functions. |
class Monot | ||
Syntax | cmgc 32746 | Extend class notation with the monotone Galois connection. |
class MGalConn | ||
Definition | df-mnt 32747* | Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
β’ Monot = (π£ β V, π€ β V β¦ β¦(Baseβπ£) / πβ¦{π β ((Baseβπ€) βm π) β£ βπ₯ β π βπ¦ β π (π₯(leβπ£)π¦ β (πβπ₯)(leβπ€)(πβπ¦))}) | ||
Definition | df-mgc 32748* | Define monotone Galois connections. See mgcval 32754 for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
β’ MGalConn = (π£ β V, π€ β V β¦ β¦(Baseβπ£) / πβ¦β¦(Baseβπ€) / πβ¦{β¨π, πβ© β£ ((π β (π βm π) β§ π β (π βm π)) β§ βπ₯ β π βπ¦ β π ((πβπ₯)(leβπ€)π¦ β π₯(leβπ£)(πβπ¦)))}) | ||
Theorem | mntoval 32749* | Operation value of the monotone function. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) β β’ ((π β π β§ π β π) β (πMonotπ) = {π β (π΅ βm π΄) β£ βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πβπ₯) β² (πβπ¦))}) | ||
Theorem | ismnt 32750* | Express the statement "πΉ is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) β β’ ((π β π β§ π β π) β (πΉ β (πMonotπ) β (πΉ:π΄βΆπ΅ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ₯) β² (πΉβπ¦))))) | ||
Theorem | ismntd 32751 | Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ (π β π β πΆ) & β’ (π β π β π·) & β’ (π β πΉ β (πMonotπ)) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β€ π) β β’ (π β (πΉβπ) β² (πΉβπ)) | ||
Theorem | mntf 32752 | A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) β β’ ((π β π β§ π β π β§ πΉ β (πMonotπ)) β πΉ:π΄βΆπ΅) | ||
Theorem | mgcoval 32753* | Operation value of the monotone Galois connection. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) β β’ ((π β π β§ π β π) β (πMGalConnπ) = {β¨π, πβ© β£ ((π β (π΅ βm π΄) β§ π β (π΄ βm π΅)) β§ βπ₯ β π΄ βπ¦ β π΅ ((πβπ₯) β² π¦ β π₯ β€ (πβπ¦)))}) | ||
Theorem | mgcval 32754* |
Monotone Galois connection between two functions πΉ and πΊ. If
this relation is satisfied, πΉ is called the lower adjoint of πΊ,
and πΊ is called the upper adjoint of πΉ.
Technically, this is implemented as an operation taking a pair of structures π and π, expected to be posets, which gives a relation between pairs of functions πΉ and πΊ. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) β β’ (π β (πΉπ»πΊ β ((πΉ:π΄βΆπ΅ β§ πΊ:π΅βΆπ΄) β§ βπ₯ β π΄ βπ¦ β π΅ ((πΉβπ₯) β² π¦ β π₯ β€ (πΊβπ¦))))) | ||
Theorem | mgcf1 32755 | The lower adjoint πΉ of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) β β’ (π β πΉ:π΄βΆπ΅) | ||
Theorem | mgcf2 32756 | The upper adjoint πΊ of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) β β’ (π β πΊ:π΅βΆπ΄) | ||
Theorem | mgccole1 32757 | An inequality for the kernel operator πΊ β πΉ. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) & β’ (π β π β π΄) β β’ (π β π β€ (πΊβ(πΉβπ))) | ||
Theorem | mgccole2 32758 | Inequality for the closure operator (πΉ β πΊ) of the Galois connection π». (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) & β’ (π β π β π΅) β β’ (π β (πΉβ(πΊβπ)) β² π) | ||
Theorem | mgcmnt1 32759 | The lower adjoint πΉ of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ (π β π β€ π) β β’ (π β (πΉβπ) β² (πΉβπ)) | ||
Theorem | mgcmnt2 32760 | The upper adjoint πΊ of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β² π) β β’ (π β (πΊβπ) β€ (πΊβπ)) | ||
Theorem | mgcmntco 32761* | A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) & β’ πΆ = (Baseβπ) & β’ < = (leβπ) & β’ (π β π β Proset ) & β’ (π β πΎ β (πMonotπ)) & β’ (π β πΏ β (πMonotπ)) β β’ (π β (βπ₯ β π΄ (πΎβπ₯) < (πΏβ(πΉβπ₯)) β βπ¦ β π΅ (πΎβ(πΊβπ¦)) < (πΏβπ¦))) | ||
Theorem | dfmgc2lem 32762* | Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΊ:π΅βΆπ΄) & β’ (π β βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ₯) β² (πΉβπ¦))) & β’ (π β βπ’ β π΅ βπ£ β π΅ (π’ β² π£ β (πΊβπ’) β€ (πΊβπ£))) & β’ ((π β§ π₯ β π΄) β π₯ β€ (πΊβ(πΉβπ₯))) & β’ ((π β§ π’ β π΅) β (πΉβ(πΊβπ’)) β² π’) β β’ (π β πΉπ»πΊ) | ||
Theorem | dfmgc2 32763* | Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) β β’ (π β (πΉπ»πΊ β ((πΉ:π΄βΆπ΅ β§ πΊ:π΅βΆπ΄) β§ ((βπ₯ β π΄ βπ¦ β π΄ (π₯ β€ π¦ β (πΉβπ₯) β² (πΉβπ¦)) β§ βπ’ β π΅ βπ£ β π΅ (π’ β² π£ β (πΊβπ’) β€ (πΊβπ£))) β§ (βπ’ β π΅ (πΉβ(πΊβπ’)) β² π’ β§ βπ₯ β π΄ π₯ β€ (πΊβ(πΉβπ₯))))))) | ||
Theorem | mgcmnt1d 32764 | Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) β β’ (π β πΉ β (πMonotπ)) | ||
Theorem | mgcmnt2d 32765 | Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
β’ π» = (πMGalConnπ) & β’ (π β π β Proset ) & β’ (π β π β Proset ) & β’ (π β πΉπ»πΊ) β β’ (π β πΊ β (πMonotπ)) | ||
Theorem | mgccnv 32766 | The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ π» = (πMGalConnπ) & β’ π = ((ODualβπ)MGalConn(ODualβπ)) β β’ ((π β Proset β§ π β Proset ) β (πΉπ»πΊ β πΊππΉ)) | ||
Theorem | pwrssmgc 32767* | Given a function πΉ, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
β’ πΊ = (π β π« π β¦ (β‘πΉ β π)) & β’ π» = (π β π« π β¦ {π¦ β π β£ (β‘πΉ β {π¦}) β π}) & β’ π = (toIncβπ« π) & β’ π = (toIncβπ« π) & β’ (π β π β π΄) & β’ (π β π β π΅) & β’ (π β πΉ:πβΆπ) β β’ (π β πΊ(πMGalConnπ)π») | ||
Theorem | mgcf1olem1 32768 | Property of a Galois connection, lemma for mgcf1o 32770. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
β’ π» = (πMGalConnπ) & β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ (π β π β Poset) & β’ (π β π β Poset) & β’ (π β πΉπ»πΊ) & β’ (π β π β π΄) β β’ (π β (πΉβ(πΊβ(πΉβπ))) = (πΉβπ)) | ||
Theorem | mgcf1olem2 32769 | Property of a Galois connection, lemma for mgcf1o 32770. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
β’ π» = (πMGalConnπ) & β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ (π β π β Poset) & β’ (π β π β Poset) & β’ (π β πΉπ»πΊ) & β’ (π β π β π΅) β β’ (π β (πΊβ(πΉβ(πΊβπ))) = (πΊβπ)) | ||
Theorem | mgcf1o 32770 | Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
β’ π» = (πMGalConnπ) & β’ π΄ = (Baseβπ) & β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ β² = (leβπ) & β’ (π β π β Poset) & β’ (π β π β Poset) & β’ (π β πΉπ»πΊ) β β’ (π β (πΉ βΎ ran πΊ) Isom β€ , β² (ran πΊ, ran πΉ)) | ||
Axiom | ax-xrssca 32771 | Assume the scalar component of the extended real structure is the field of the real numbers (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
β’ βfld = (Scalarββ*π ) | ||
Axiom | ax-xrsvsca 32772 | Assume the scalar product of the extended real structure is the extended real number multiplication operation (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
β’ Β·e = ( Β·π ββ*π ) | ||
Theorem | xrs0 32773 | The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13255 and df-xrs 17478), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
β’ 0 = (0gββ*π ) | ||
Theorem | xrslt 32774 | The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ < = (ltββ*π ) | ||
Theorem | xrsinvgval 32775 | The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13255 and df-xrs 17478), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
β’ (π΅ β β* β ((invgββ*π )βπ΅) = -ππ΅) | ||
Theorem | xrsmulgzz 32776 | The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
β’ ((π΄ β β€ β§ π΅ β β*) β (π΄(.gββ*π )π΅) = (π΄ Β·e π΅)) | ||
Theorem | xrstos 32777 | The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
β’ β*π β Toset | ||
Theorem | xrsclat 32778 | The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
β’ β*π β CLat | ||
Theorem | xrsp0 32779 | The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Proof shortened by AV, 28-Sep-2020.) |
β’ -β = (0.ββ*π ) | ||
Theorem | xrsp1 32780 | The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
β’ +β = (1.ββ*π ) | ||
Theorem | xrge0base 32781 | The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
β’ (0[,]+β) = (Baseβ(β*π βΎs (0[,]+β))) | ||
Theorem | xrge00 32782 | The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
β’ 0 = (0gβ(β*π βΎs (0[,]+β))) | ||
Theorem | xrge0plusg 32783 | The additive law of the extended nonnegative real numbers monoid is the addition in the extended real numbers. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
β’ +π = (+gβ(β*π βΎs (0[,]+β))) | ||
Theorem | xrge0le 32784 | The "less than or equal to" relation in the extended real numbers. (Contributed by Thierry Arnoux, 14-Mar-2018.) |
β’ β€ = (leβ(β*π βΎs (0[,]+β))) | ||
Theorem | xrge0mulgnn0 32785 | The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
β’ ((π΄ β β0 β§ π΅ β (0[,]+β)) β (π΄(.gβ(β*π βΎs (0[,]+β)))π΅) = (π΄ Β·e π΅)) | ||
Theorem | xrge0addass 32786 | Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
β’ ((π΄ β (0[,]+β) β§ π΅ β (0[,]+β) β§ πΆ β (0[,]+β)) β ((π΄ +π π΅) +π πΆ) = (π΄ +π (π΅ +π πΆ))) | ||
Theorem | xrge0addgt0 32787 | The sum of nonnegative and positive numbers is positive. See addgtge0 11727. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
β’ (((π΄ β (0[,]+β) β§ π΅ β (0[,]+β)) β§ 0 < π΄) β 0 < (π΄ +π π΅)) | ||
Theorem | xrge0adddir 32788 | Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
β’ ((π΄ β (0[,]+β) β§ π΅ β (0[,]+β) β§ πΆ β (0[,]+β)) β ((π΄ +π π΅) Β·e πΆ) = ((π΄ Β·e πΆ) +π (π΅ Β·e πΆ))) | ||
Theorem | xrge0adddi 32789 | Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
β’ ((π΄ β (0[,]+β) β§ π΅ β (0[,]+β) β§ πΆ β (0[,]+β)) β (πΆ Β·e (π΄ +π π΅)) = ((πΆ Β·e π΄) +π (πΆ Β·e π΅))) | ||
Theorem | xrge0npcan 32790 | Extended nonnegative real version of npcan 11494. (Contributed by Thierry Arnoux, 9-Jun-2017.) |
β’ ((π΄ β (0[,]+β) β§ π΅ β (0[,]+β) β§ π΅ β€ π΄) β ((π΄ +π -ππ΅) +π π΅) = π΄) | ||
Theorem | fsumrp0cl 32791* | Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.) |
β’ (π β π΄ β Fin) & β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) β β’ (π β Ξ£π β π΄ π΅ β (0[,)+β)) | ||
Theorem | cmn4d 32792 | Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((π + π) + (π + π)) = ((π + π) + (π + π))) | ||
Theorem | cmn246135 32793 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33005. (Contributed by Thierry Arnoux, 4-May-2025.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((π + π) + ((π + π) + (π + π))) = ((π + (π + π)) + (π + (π + π)))) | ||
Theorem | cmn145236 32794 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33005. (Contributed by Thierry Arnoux, 4-May-2025.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((π + π) + ((π + π) + (π + π))) = ((π + (π + π)) + (π + (π + π)))) | ||
Theorem | submcld 32795 | Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
β’ + = (+gβπ) & β’ (π β π β (SubMndβπ)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π + π) β π) | ||
Theorem | abliso 32796 | The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
β’ ((π β Abel β§ πΉ β (π GrpIso π)) β π β Abel) | ||
Theorem | lmhmghmd 32797 | A module homomorphism is a group homomorphism. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
β’ (π β πΉ β (π LMHom π)) β β’ (π β πΉ β (π GrpHom π)) | ||
Theorem | mhmimasplusg 32798 | Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
β’ π = (πΉ βs π) & β’ π΅ = (Baseβπ) & β’ πΆ = (Baseβπ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β πΉ:π΅βontoβπΆ) & β’ (π β πΉ β (π MndHom π)) & β’ + = (+gβπ) & ⒠⨣ = (+gβπ) β β’ (π β ((πΉβπ) ⨣ (πΉβπ)) = (πΉβ(π + π))) | ||
Theorem | lmhmimasvsca 32799 | Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
β’ π = (πΉ βs π) & β’ π΅ = (Baseβπ) & β’ πΆ = (Baseβπ) & β’ (π β π β πΎ) & β’ (π β π β π΅) & β’ (π β πΉ:π΅βontoβπΆ) & β’ (π β πΉ β (π LMHom π)) & β’ Β· = ( Β·π βπ) & β’ Γ = ( Β·π βπ) & β’ πΎ = (Baseβ(Scalarβπ)) β β’ (π β (π Γ (πΉβπ)) = (πΉβ(π Β· π))) | ||
Theorem | gsumsubg 32800 | The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023.) |
β’ π» = (πΊ βΎs π΅) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β π΅ β (SubGrpβπΊ)) β β’ (π β (πΊ Ξ£g πΉ) = (π» Ξ£g πΉ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |