![]() |
Metamath
Proof Explorer Theorem List (p. 328 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fsuppinisegfi 32701 | The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) | ||
Theorem | fressupp 32702 | The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍}))) | ||
Theorem | fdifsuppconst 32703 | A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⇒ ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) | ||
Theorem | ressupprn 32704 | The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 })) | ||
Theorem | supppreima 32705 | Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) | ||
Theorem | fsupprnfi 32706 | Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ ( 0 ∈ 𝑊 ∧ 𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin) | ||
Theorem | mptiffisupp 32707* | Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝑍)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | cosnopne 32708 | Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) | ||
Theorem | cosnop 32709 | Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) | ||
Theorem | cnvprop 32710 | Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉}) | ||
Theorem | brprop 32711 | Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) | ||
Theorem | mptprop 32712* | Rewrite pairs of ordered pairs as mapping to functions. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 = 𝐴, 𝐵, 𝐷))) | ||
Theorem | coprprop 32713 | Composition of two pairs of ordered pairs with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∘ {〈𝐸, 𝐴〉, 〈𝐹, 𝐶〉}) = {〈𝐸, 𝐵〉, 〈𝐹, 𝐷〉}) | ||
Theorem | fmptunsnop 32714* | Two ways to express a function with a value replaced. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 = 𝑋, 𝑌, (𝐹‘𝑥))) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})) | ||
Theorem | gtiso 32715 | Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → (𝐹 Isom < , ◡ < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ◡ ≤ (𝐴, 𝐵))) | ||
Theorem | isoun 32716* | Infer an isomorphism from a union of two isomorphisms. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → 𝑥𝑅𝑦) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → 𝑧𝑆𝑤) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) → ¬ 𝑥𝑅𝑦) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐵) → ¬ 𝑧𝑆𝑤) & ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) & ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) ⇒ ⊢ (𝜑 → (𝐻 ∪ 𝐺) Isom 𝑅, 𝑆 ((𝐴 ∪ 𝐶), (𝐵 ∪ 𝐷))) | ||
Theorem | disjdsct 32717* | A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6636) (Contributed by Thierry Arnoux, 28-Feb-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (𝑉 ∖ {∅})) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) | ||
Theorem | df1stres 32718* | Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) | ||
Theorem | df2ndres 32719* | Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) | ||
Theorem | 1stpreimas 32720 | The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝑉) → (◡(1st ↾ 𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋}))) | ||
Theorem | 1stpreima 32721 | The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
⊢ (𝐴 ⊆ 𝐵 → (◡(1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶)) | ||
Theorem | 2ndpreima 32722 | The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
⊢ (𝐴 ⊆ 𝐶 → (◡(2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴)) | ||
Theorem | curry2ima 32723* | The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ⇒ ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) | ||
Theorem | preiman0 32724 | The preimage of a nonempty set is nonempty. (Contributed by Thierry Arnoux, 9-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ 𝐴) ≠ ∅) | ||
Theorem | intimafv 32725* | The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
Theorem | supssd 32726* | Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) | ||
Theorem | infssd 32727* | Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) | ||
Theorem | imafi2 32728 | The image by a finite set is finite. See also imafi 9350. (Contributed by Thierry Arnoux, 25-Apr-2020.) |
⊢ (𝐴 ∈ Fin → (𝐴 “ 𝐵) ∈ Fin) | ||
Theorem | unifi3 32729 | If a union is finite, then all its elements are finite. See unifi 9381. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (∪ 𝐴 ∈ Fin → 𝐴 ⊆ Fin) | ||
Theorem | snct 32730 | A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) | ||
Theorem | prct 32731 | An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ≼ ω) | ||
Theorem | mpocti 32732* | An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 ⇒ ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
Theorem | abrexct 32733* | An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) | ||
Theorem | mptctf 32734 | A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | ||
Theorem | abrexctf 32735* | An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) | ||
Theorem | padct 32736* | Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.) |
⊢ ((𝐴 ≼ ω ∧ 𝑍 ∈ 𝑉 ∧ ¬ 𝑍 ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) | ||
Theorem | cnvoprabOLD 32737* | The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab 8083 as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) & ⊢ (𝜓 → 𝑎 ∈ (V × V)) ⇒ ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} | ||
Theorem | f1od2 32738* | Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by Thierry Arnoux, 17-Aug-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) & ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) ⇒ ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) | ||
Theorem | fcobij 32739* | Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017.) |
⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑓 ∈ (𝑆 ↑m 𝑅) ↦ (𝐺 ∘ 𝑓)):(𝑆 ↑m 𝑅)–1-1-onto→(𝑇 ↑m 𝑅)) | ||
Theorem | fcobijfs 32740* | Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9445. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝑂 ∈ 𝑆) & ⊢ 𝑄 = (𝐺‘𝑂) & ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} & ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} ⇒ ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) | ||
Theorem | suppss3 32741* | Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑍) → 𝐵 = 𝑍) ⇒ ⊢ (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
Theorem | fsuppcurry1 32742* | Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
Theorem | fsuppcurry2 32743* | Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
Theorem | offinsupp1 32744* | Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) & ⊢ (𝜑 → 𝐹 finSupp 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) | ||
Theorem | ffs2 32745 | Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq 8198. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐶 = (𝐵 ∖ {𝑍}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) | ||
Theorem | ffsrn 32746 | The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ Fin) | ||
Theorem | resf1o 32747* | Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
⊢ 𝑋 = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶} & ⊢ 𝐹 = (𝑓 ∈ 𝑋 ↦ (𝑓 ↾ 𝐶)) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝐹:𝑋–1-1-onto→(𝐵 ↑m 𝐶)) | ||
Theorem | maprnin 32748* | Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} | ||
Theorem | fpwrelmapffslem 32749* | Lemma for fpwrelmapffs 32751. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → 𝐹:𝐴⟶𝒫 𝐵) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))}) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))) | ||
Theorem | fpwrelmap 32750* | Define a canonical mapping between functions from 𝐴 into subsets of 𝐵 and the relations with domain 𝐴 and range within 𝐵. Note that the same relation is used in axdc2lem 10485 and marypha2lem1 9472. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ⇒ ⊢ 𝑀:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵) | ||
Theorem | fpwrelmapffs 32751* | Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) & ⊢ 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} ⇒ ⊢ (𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) | ||
Theorem | creq0 32752 | The real representation of complex numbers is zero iff both its terms are zero. Cf. crne0 12256. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ (𝐴 + (i · 𝐵)) = 0)) | ||
Theorem | 1nei 32753 | The imaginary unit i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ 1 ≠ i | ||
Theorem | 1neg1t1neg1 32754 | An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
⊢ (𝑁 ∈ {-1, 1} → (𝑁 · 𝑁) = 1) | ||
Theorem | nnmulge 32755 | Multiplying by a positive integer 𝑀 yields greater than or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑀 · 𝑁)) | ||
Theorem | submuladdd 32756 | The product of a difference and a sum. Cf. addmulsub 11722. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) − ((𝐵 · 𝐶) + (𝐵 · 𝐷)))) | ||
Theorem | muldivdid 32757 | Distribution of division over addition with a multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (((𝐴 · 𝐵) + 𝐶) / 𝐵) = (𝐴 + (𝐶 / 𝐵))) | ||
Theorem | cjsubd 32758 | Complex conjugate distributes over subtraction. (Contributed by Thierry Arnoux, 1-Jul-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | ||
Theorem | re0cj 32759 | The conjugate of a pure imaginary number is its negative. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℜ‘𝐴) = 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) = -𝐴) | ||
Theorem | quad3d 32760 | Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019.) Deduction version. (Revised by Thierry Arnoux, 6-Jul-2025.) |
⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0) ⇒ ⊢ (𝜑 → (𝑋 = ((-𝐵 + (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)))) | ||
Theorem | lt2addrd 32761* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
Theorem | xrlelttric 32762 | Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
Theorem | xaddeq0 32763 | Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵)) | ||
Theorem | xrinfm 32764 | The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
⊢ inf(ℝ*, ℝ*, < ) = -∞ | ||
Theorem | le2halvesd 32765 | A sum is less than the whole if each term is less than half. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ (𝐶 / 2)) & ⊢ (𝜑 → 𝐵 ≤ (𝐶 / 2)) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ 𝐶) | ||
Theorem | xraddge02 32766 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → 𝐴 ≤ (𝐴 +𝑒 𝐵))) | ||
Theorem | xrge0addge 32767 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 𝐴 ≤ (𝐴 +𝑒 𝐵)) | ||
Theorem | xlt2addrd 32768* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ≠ -∞) & ⊢ (𝜑 → 𝐶 ≠ -∞) & ⊢ (𝜑 → 𝐴 < (𝐵 +𝑒 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ* ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
Theorem | xrsupssd 32769 | Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) | ||
Theorem | xrge0infss 32770* | Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
Theorem | xrge0infssd 32771 | Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) ⇒ ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) | ||
Theorem | xrge0addcld 32772 | Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | xrge0subcld 32773 | Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) | ||
Theorem | infxrge0lb 32774 | A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ≤ 𝐵) | ||
Theorem | infxrge0glb 32775* | The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | ||
Theorem | infxrge0gelb 32776* | The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | ||
Theorem | xrofsup 32777 | The supremum is preserved by extended addition set operation. (Provided minus infinity is not involved as it does not behave well with addition.) (Contributed by Thierry Arnoux, 20-Mar-2017.) |
⊢ (𝜑 → 𝑋 ⊆ ℝ*) & ⊢ (𝜑 → 𝑌 ⊆ ℝ*) & ⊢ (𝜑 → sup(𝑋, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → sup(𝑌, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → 𝑍 = ( +𝑒 “ (𝑋 × 𝑌))) ⇒ ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = (sup(𝑋, ℝ*, < ) +𝑒 sup(𝑌, ℝ*, < ))) | ||
Theorem | supxrnemnf 32778 | The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) | ||
Theorem | xnn0gt0 32779 | Nonzero extended nonnegative integers are strictly greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ ((𝑁 ∈ ℕ0* ∧ 𝑁 ≠ 0) → 0 < 𝑁) | ||
Theorem | xnn01gt 32780 | An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than 1. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
⊢ (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ {0, 1} ↔ 1 < 𝑁)) | ||
Theorem | nn0xmulclb 32781 | Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0))) | ||
Theorem | joiniooico 32782 | Disjoint joining an open interval with a closed-below, open-above interval to form a closed-below, open-above interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ ∧ ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))) | ||
Theorem | ubico 32783 | A right-open interval does not contain its right endpoint. (Contributed by Thierry Arnoux, 5-Apr-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴[,)𝐵)) | ||
Theorem | xeqlelt 32784 | Equality in terms of 'less than or equal to', 'less than'. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | ||
Theorem | eliccelico 32785 | Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵))) | ||
Theorem | elicoelioo 32786 | Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵)))) | ||
Theorem | iocinioc2 32787 | Intersection between two open-below, closed-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 7-Aug-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) | ||
Theorem | xrdifh 32788 | Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017.) |
⊢ 𝐴 ∈ ℝ* ⇒ ⊢ (ℝ* ∖ (𝐴[,]+∞)) = (-∞[,)𝐴) | ||
Theorem | iocinif 32789 | Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶))) | ||
Theorem | difioo 32790 | The difference between two open intervals sharing the same lower bound. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐶) ∖ (𝐴(,)𝐵)) = (𝐵[,)𝐶)) | ||
Theorem | difico 32791 | The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐶) ∖ (𝐵[,)𝐶)) = (𝐴[,)𝐵)) | ||
Theorem | uzssico 32792 | Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ (𝑀[,)+∞)) | ||
Theorem | fz2ssnn0 32793 | A finite set of sequential integers that is a subset of ℕ0. (Contributed by Thierry Arnoux, 8-Dec-2021.) |
⊢ (𝑀 ∈ ℕ0 → (𝑀...𝑁) ⊆ ℕ0) | ||
Theorem | nndiffz1 32794 | Upper set of the positive integers. (Contributed by Thierry Arnoux, 22-Aug-2017.) |
⊢ (𝑁 ∈ ℕ0 → (ℕ ∖ (1...𝑁)) = (ℤ≥‘(𝑁 + 1))) | ||
Theorem | ssnnssfz 32795* | For any finite subset of ℕ, find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017.) |
⊢ (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛)) | ||
Theorem | fzm1ne1 32796 | Elementhood of an integer and its predecessor in finite intervals of integers. (Contributed by Thierry Arnoux, 1-Jan-2024.) |
⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → (𝐾 − 1) ∈ (𝑀...(𝑁 − 1))) | ||
Theorem | fzspl 32797 | Split the last element of a finite set of sequential integers. More generic than fzsuc 13607. (Contributed by Thierry Arnoux, 7-Nov-2016.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) | ||
Theorem | fzdif2 32798 | Split the last element of a finite set of sequential integers. More generic than fzsuc 13607. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) ∖ {𝑁}) = (𝑀...(𝑁 − 1))) | ||
Theorem | fzodif2 32799 | Split the last element of a half-open range of sequential integers. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀..^(𝑁 + 1)) ∖ {𝑁}) = (𝑀..^𝑁)) | ||
Theorem | fzodif1 32800 | Set difference of two half-open range of sequential integers sharing the same starting value. (Contributed by Thierry Arnoux, 2-Oct-2023.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑀..^𝑁) ∖ (𝑀..^𝐾)) = (𝐾..^𝑁)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |