HomeHome Metamath Proof Explorer
Theorem List (p. 328 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 32701-32800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembnj334 32701 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) ↔ (𝜒𝜑𝜓𝜃))
 
Theorembnj345 32702 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) ↔ (𝜃𝜑𝜓𝜒))
 
Theorembnj422 32703 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) ↔ (𝜒𝜃𝜑𝜓))
 
Theorembnj432 32704 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) ↔ ((𝜒𝜃) ∧ (𝜑𝜓)))
 
Theorembnj446 32705 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) ↔ ((𝜓𝜒𝜃) ∧ 𝜑))
 
Theorembnj23 32706* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
𝐵 = {𝑥𝐴 ∣ ¬ 𝜑}       (∀𝑧𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤𝐴 (𝑤𝑅𝑦[𝑤 / 𝑥]𝜑))
 
Theorembnj31 32707 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∃𝑥𝐴 𝜓)    &   (𝜓𝜒)       (𝜑 → ∃𝑥𝐴 𝜒)
 
Theorembnj62 32708* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
([𝑧 / 𝑥]𝑥 Fn 𝐴𝑧 Fn 𝐴)
 
Theorembnj89 32709* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑍 ∈ V       ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑)
 
Theorembnj90 32710* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
𝑌 ∈ V       ([𝑌 / 𝑥]𝑧 Fn 𝑥𝑧 Fn 𝑌)
 
Theorembnj101 32711 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑥𝜑    &   (𝜑𝜓)       𝑥𝜓
 
Theorembnj105 32712 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
1o ∈ V
 
Theorembnj115 32713 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ ∀𝑛𝐷 (𝜏𝜃))       (𝜂 ↔ ∀𝑛((𝑛𝐷𝜏) → 𝜃))
 
Theorembnj132 32714* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ ∃𝑥(𝜓𝜒))       (𝜑 ↔ (𝜓 → ∃𝑥𝜒))
 
Theorembnj133 32715 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ ∃𝑥𝜓)    &   (𝜒𝜓)       (𝜑 ↔ ∃𝑥𝜒)
 
Theorembnj156 32716 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))    &   (𝜁1[𝑔 / 𝑓]𝜁0)    &   (𝜑1[𝑔 / 𝑓]𝜑′)    &   (𝜓1[𝑔 / 𝑓]𝜓′)       (𝜁1 ↔ (𝑔 Fn 1o𝜑1𝜓1))
 
Theorembnj158 32717* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})       (𝑚𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝)
 
Theorembnj168 32718* First-order logic and set theory. Revised to remove dependence on ax-reg 9360. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})       ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝐷 𝑛 = suc 𝑚)
 
Theorembnj206 32719 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑′[𝑀 / 𝑛]𝜑)    &   (𝜓′[𝑀 / 𝑛]𝜓)    &   (𝜒′[𝑀 / 𝑛]𝜒)    &   𝑀 ∈ V       ([𝑀 / 𝑛](𝜑𝜓𝜒) ↔ (𝜑′𝜓′𝜒′))
 
Theorembnj216 32720 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 ∈ V       (𝐴 = suc 𝐵𝐵𝐴)
 
Theorembnj219 32721 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑛 = suc 𝑚𝑚 E 𝑛)
 
Theorembnj226 32722* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵𝐶        𝑥𝐴 𝐵𝐶
 
Theorembnj228 32723 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.)
(𝜑 ↔ ∀𝑥𝐴 𝜓)       ((𝑥𝐴𝜑) → 𝜓)
 
Theorembnj519 32724 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.)
𝐴 ∈ V       (𝐵 ∈ V → Fun {⟨𝐴, 𝐵⟩})
 
Theorembnj521 32725 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝐴 ∩ {𝐴}) = ∅
 
Theorembnj524 32726 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑𝜓)    &   𝐴 ∈ V       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
 
Theorembnj525 32727* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐴 ∈ V       ([𝐴 / 𝑥]𝜑𝜑)
 
Theorembnj534 32728* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 → (∃𝑥𝜑𝜓))       (𝜒 → ∃𝑥(𝜑𝜓))
 
Theorembnj538 32729* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020.)
𝐴 ∈ V       ([𝐴 / 𝑦]𝑥𝐵 𝜑 ↔ ∀𝑥𝐵 [𝐴 / 𝑦]𝜑)
 
Theorembnj529 32730 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})       (𝑀𝐷 → ∅ ∈ 𝑀)
 
Theorembnj551 32731 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
 
Theorembnj563 32732 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))    &   (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))       ((𝜂𝜌) → suc 𝑖𝑚)
 
Theorembnj564 32733 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))       (𝜏 → dom 𝑓 = 𝑚)
 
Theorembnj593 32734 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∃𝑥𝜓)    &   (𝜓𝜒)       (𝜑 → ∃𝑥𝜒)
 
Theorembnj596 32735 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∃𝑥𝜓)       (𝜑 → ∃𝑥(𝜑𝜓))
 
Theorembnj610 32736* Pass from equality (𝑥 = 𝐴) to substitution ([𝐴 / 𝑥]) without the distinct variable condition on 𝐴, 𝑥. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜓′))    &   (𝑦 = 𝐴 → (𝜓′𝜓))       ([𝐴 / 𝑥]𝜑𝜓)
 
Theorembnj642 32737 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) → 𝜑)
 
Theorembnj643 32738 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) → 𝜓)
 
Theorembnj645 32739 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) → 𝜃)
 
Theorembnj658 32740 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) → (𝜑𝜓𝜒))
 
Theorembnj667 32741 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒𝜃) → (𝜓𝜒𝜃))
 
Theorembnj705 32742 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑𝜏)       ((𝜑𝜓𝜒𝜃) → 𝜏)
 
Theorembnj706 32743 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓𝜏)       ((𝜑𝜓𝜒𝜃) → 𝜏)
 
Theorembnj707 32744 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒𝜏)       ((𝜑𝜓𝜒𝜃) → 𝜏)
 
Theorembnj708 32745 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜃𝜏)       ((𝜑𝜓𝜒𝜃) → 𝜏)
 
Theorembnj721 32746 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓𝜒) → 𝜏)       ((𝜑𝜓𝜒𝜃) → 𝜏)
 
Theorembnj832 32747 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ (𝜑𝜓))    &   (𝜑𝜏)       (𝜂𝜏)
 
Theorembnj835 32748 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ (𝜑𝜓𝜒))    &   (𝜑𝜏)       (𝜂𝜏)
 
Theorembnj836 32749 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ (𝜑𝜓𝜒))    &   (𝜓𝜏)       (𝜂𝜏)
 
Theorembnj837 32750 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ (𝜑𝜓𝜒))    &   (𝜒𝜏)       (𝜂𝜏)
 
Theorembnj769 32751 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ (𝜑𝜓𝜒𝜃))    &   (𝜑𝜏)       (𝜂𝜏)
 
Theorembnj770 32752 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ (𝜑𝜓𝜒𝜃))    &   (𝜓𝜏)       (𝜂𝜏)
 
Theorembnj771 32753 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ (𝜑𝜓𝜒𝜃))    &   (𝜒𝜏)       (𝜂𝜏)
 
Theorembnj887 32754 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑𝜑′)    &   (𝜓𝜓′)    &   (𝜒𝜒′)    &   (𝜃𝜃′)       ((𝜑𝜓𝜒𝜃) ↔ (𝜑′𝜓′𝜒′𝜃′))
 
Theorembnj918 32755 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       𝐺 ∈ V
 
Theorembnj919 32756* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝐹 Fn 𝑛𝜑𝜓))    &   (𝜑′[𝑃 / 𝑛]𝜑)    &   (𝜓′[𝑃 / 𝑛]𝜓)    &   (𝜒′[𝑃 / 𝑛]𝜒)    &   𝑃 ∈ V       (𝜒′ ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′))
 
Theorembnj923 32757 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})       (𝑛𝐷𝑛 ∈ ω)
 
Theorembnj927 32758 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   𝐶 ∈ V       ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)
 
Theorembnj931 32759 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐴 = (𝐵𝐶)       𝐵𝐴
 
Theorembnj937 32760* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∃𝑥𝜓)       (𝜑𝜓)
 
Theorembnj941 32761 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
 
Theorembnj945 32762 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))
 
Theorembnj946 32763 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ ∀𝑥𝐴 𝜓)       (𝜑 ↔ ∀𝑥(𝑥𝐴𝜓))
 
Theorembnj951 32764 -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜏𝜑)    &   (𝜏𝜓)    &   (𝜏𝜒)    &   (𝜏𝜃)       (𝜏 → (𝜑𝜓𝜒𝜃))
 
Theorembnj956 32765 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵)       (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 
Theorembnj976 32766* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑁𝐷𝑓 Fn 𝑁𝜑𝜓))    &   (𝜑′[𝐺 / 𝑓]𝜑)    &   (𝜓′[𝐺 / 𝑓]𝜓)    &   (𝜒′[𝐺 / 𝑓]𝜒)    &   𝐺 ∈ V       (𝜒′ ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′))
 
Theorembnj982 32767 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝜒 → ∀𝑥𝜒)    &   (𝜃 → ∀𝑥𝜃)       ((𝜑𝜓𝜒𝜃) → ∀𝑥(𝜑𝜓𝜒𝜃))
 
Theorembnj1019 32768* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(∃𝑝(𝜃𝜒𝜏𝜂) ↔ (𝜃𝜒𝜂 ∧ ∃𝑝𝜏))
 
Theorembnj1023 32769 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑥(𝜑𝜓)    &   (𝜓𝜒)       𝑥(𝜑𝜒)
 
Theorembnj1095 32770 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ ∀𝑥𝐴 𝜓)       (𝜑 → ∀𝑥𝜑)
 
Theorembnj1096 32771* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 ↔ (𝜒𝜃𝜏𝜑))       (𝜓 → ∀𝑥𝜓)
 
Theorembnj1098 32772* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})       𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
 
Theorembnj1101 32773 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑥(𝜑𝜓)    &   (𝜒𝜑)       𝑥(𝜒𝜓)
 
Theorembnj1113 32774* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝐴 = 𝐵𝐶 = 𝐷)       (𝐴 = 𝐵 𝑥𝐶 𝐸 = 𝑥𝐷 𝐸)
 
Theorembnj1109 32775 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑥((𝐴𝐵𝜑) → 𝜓)    &   ((𝐴 = 𝐵𝜑) → 𝜓)       𝑥(𝜑𝜓)
 
Theorembnj1131 32776 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   𝑥𝜑       𝜑
 
Theorembnj1138 32777 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐴 = (𝐵𝐶)       (𝑋𝐴 ↔ (𝑋𝐵𝑋𝐶))
 
Theorembnj1142 32778 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥(𝑥𝐴𝜓))       (𝜑 → ∀𝑥𝐴 𝜓)
 
Theorembnj1143 32779* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑥𝐴 𝐵𝐵
 
Theorembnj1146 32780* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)        𝑥𝐴 𝐵𝐵
 
Theorembnj1149 32781 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)       (𝜑 → (𝐴𝐵) ∈ V)
 
Theorembnj1185 32782* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑅𝑧)       (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theorembnj1196 32783 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∃𝑥𝐴 𝜓)       (𝜑 → ∃𝑥(𝑥𝐴𝜓))
 
Theorembnj1198 32784 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∃𝑥𝜓)    &   (𝜓′𝜓)       (𝜑 → ∃𝑥𝜓′)
 
Theorembnj1209 32785* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 → ∃𝑥𝐵 𝜑)    &   (𝜃 ↔ (𝜒𝑥𝐵𝜑))       (𝜒 → ∃𝑥𝜃)
 
Theorembnj1211 32786 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝐴 𝜓)       (𝜑 → ∀𝑥(𝑥𝐴𝜓))
 
Theorembnj1213 32787 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐴𝐵    &   (𝜃𝑥𝐴)       (𝜃𝑥𝐵)
 
Theorembnj1212 32788* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑥𝐴𝜑}    &   (𝜃 ↔ (𝜒𝑥𝐵𝜏))       (𝜃𝑥𝐴)
 
Theorembnj1219 32789 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝜑𝜓𝜁))    &   (𝜃 ↔ (𝜒𝜏𝜂))       (𝜃𝜓)
 
Theorembnj1224 32790 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
¬ (𝜃𝜏𝜂)       ((𝜃𝜏) → ¬ 𝜂)
 
Theorembnj1230 32791* First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑥𝐴𝜑}       (𝑦𝐵 → ∀𝑥 𝑦𝐵)
 
Theorembnj1232 32792 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝜓𝜒𝜃𝜏))       (𝜑𝜓)
 
Theorembnj1235 32793 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝜓𝜒𝜃𝜏))       (𝜑𝜒)
 
Theorembnj1239 32794 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(∃𝑥𝐴 (𝜓𝜒) → ∃𝑥𝐴 𝜓)
 
Theorembnj1238 32795 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ ∃𝑥𝐴 (𝜓𝜒))       (𝜑 → ∃𝑥𝐴 𝜓)
 
Theorembnj1241 32796 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑𝐴𝐵)    &   (𝜓𝐶 = 𝐴)       ((𝜑𝜓) → 𝐶𝐵)
 
Theorembnj1247 32797 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝜓𝜒𝜃𝜏))       (𝜑𝜃)
 
Theorembnj1254 32798 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝜓𝜒𝜃𝜏))       (𝜑𝜏)
 
Theorembnj1262 32799 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐴𝐵    &   (𝜑𝐶 = 𝐴)       (𝜑𝐶𝐵)
 
Theorembnj1266 32800 First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 → ∃𝑥(𝜑𝜓))       (𝜒 → ∃𝑥𝜓)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >