Home | Metamath
Proof Explorer Theorem List (p. 328 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bnj334 32701 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃)) | ||
Theorem | bnj345 32702 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
Theorem | bnj422 32703 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜃 ∧ 𝜑 ∧ 𝜓)) | ||
Theorem | bnj432 32704 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜒 ∧ 𝜃) ∧ (𝜑 ∧ 𝜓))) | ||
Theorem | bnj446 32705 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜑)) | ||
Theorem | bnj23 32706* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⇒ ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) | ||
Theorem | bnj31 32707 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
Theorem | bnj62 32708* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) | ||
Theorem | bnj89 32709* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝑍 ∈ V ⇒ ⊢ ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑) | ||
Theorem | bnj90 32710* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
⊢ 𝑌 ∈ V ⇒ ⊢ ([𝑌 / 𝑥]𝑧 Fn 𝑥 ↔ 𝑧 Fn 𝑌) | ||
Theorem | bnj101 32711 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑥𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ ∃𝑥𝜓 | ||
Theorem | bnj105 32712 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 1o ∈ V | ||
Theorem | bnj115 32713 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ ∀𝑛 ∈ 𝐷 (𝜏 → 𝜃)) ⇒ ⊢ (𝜂 ↔ ∀𝑛((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) | ||
Theorem | bnj132 32714* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∃𝑥(𝜓 → 𝜒)) ⇒ ⊢ (𝜑 ↔ (𝜓 → ∃𝑥𝜒)) | ||
Theorem | bnj133 32715 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∃𝑥𝜓) & ⊢ (𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ ∃𝑥𝜒) | ||
Theorem | bnj156 32716 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) & ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) & ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) & ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) ⇒ ⊢ (𝜁1 ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) | ||
Theorem | bnj158 32717* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) | ||
Theorem | bnj168 32718* | First-order logic and set theory. Revised to remove dependence on ax-reg 9360. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ ((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) → ∃𝑚 ∈ 𝐷 𝑛 = suc 𝑚) | ||
Theorem | bnj206 32719 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑′ ↔ [𝑀 / 𝑛]𝜑) & ⊢ (𝜓′ ↔ [𝑀 / 𝑛]𝜓) & ⊢ (𝜒′ ↔ [𝑀 / 𝑛]𝜒) & ⊢ 𝑀 ∈ V ⇒ ⊢ ([𝑀 / 𝑛](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′)) | ||
Theorem | bnj216 32720 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) | ||
Theorem | bnj219 32721 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) | ||
Theorem | bnj226 32722* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 | ||
Theorem | bnj228 32723 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | ||
Theorem | bnj519 32724 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ V → Fun {〈𝐴, 𝐵〉}) | ||
Theorem | bnj521 32725 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝐴 ∩ {𝐴}) = ∅ | ||
Theorem | bnj524 32726 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
Theorem | bnj525 32727* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | bnj534 32728* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → (∃𝑥𝜑 ∧ 𝜓)) ⇒ ⊢ (𝜒 → ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | bnj538 32729* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) | ||
Theorem | bnj529 32730 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ (𝑀 ∈ 𝐷 → ∅ ∈ 𝑀) | ||
Theorem | bnj551 32731 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) | ||
Theorem | bnj563 32732 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) & ⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) ⇒ ⊢ ((𝜂 ∧ 𝜌) → suc 𝑖 ∈ 𝑚) | ||
Theorem | bnj564 32733 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) ⇒ ⊢ (𝜏 → dom 𝑓 = 𝑚) | ||
Theorem | bnj593 32734 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥𝜒) | ||
Theorem | bnj596 32735 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | bnj610 32736* | Pass from equality (𝑥 = 𝐴) to substitution ([𝐴 / 𝑥]) without the distinct variable condition on 𝐴, 𝑥. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓′)) & ⊢ (𝑦 = 𝐴 → (𝜓′ ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | bnj642 32737 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜑) | ||
Theorem | bnj643 32738 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | ||
Theorem | bnj645 32739 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | ||
Theorem | bnj658 32740 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
Theorem | bnj667 32741 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj705 32742 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj706 32743 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜓 → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj707 32744 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj708 32745 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜃 → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj721 32746 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj832 32747 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj835 32748 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj836 32749 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) & ⊢ (𝜓 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj837 32750 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) & ⊢ (𝜒 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj769 32751 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj770 32752 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) & ⊢ (𝜓 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj771 32753 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) & ⊢ (𝜒 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj887 32754 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜑′) & ⊢ (𝜓 ↔ 𝜓′) & ⊢ (𝜒 ↔ 𝜒′) & ⊢ (𝜃 ↔ 𝜃′) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′ ∧ 𝜃′)) | ||
Theorem | bnj918 32755 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) ⇒ ⊢ 𝐺 ∈ V | ||
Theorem | bnj919 32756* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜑′ ↔ [𝑃 / 𝑛]𝜑) & ⊢ (𝜓′ ↔ [𝑃 / 𝑛]𝜓) & ⊢ (𝜒′ ↔ [𝑃 / 𝑛]𝜒) & ⊢ 𝑃 ∈ V ⇒ ⊢ (𝜒′ ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′)) | ||
Theorem | bnj923 32757 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) | ||
Theorem | bnj927 32758 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) | ||
Theorem | bnj931 32759 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐵 ⊆ 𝐴 | ||
Theorem | bnj937 32760* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | bnj941 32761 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) ⇒ ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) | ||
Theorem | bnj945 32762 | Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) ⇒ ⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝐴 ∈ 𝑛) → (𝐺‘𝐴) = (𝑓‘𝐴)) | ||
Theorem | bnj946 32763 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | bnj951 32764 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜏 → 𝜑) & ⊢ (𝜏 → 𝜓) & ⊢ (𝜏 → 𝜒) & ⊢ (𝜏 → 𝜃) ⇒ ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj956 32765 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | bnj976 32766* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 ↔ (𝑁 ∈ 𝐷 ∧ 𝑓 Fn 𝑁 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜑′ ↔ [𝐺 / 𝑓]𝜑) & ⊢ (𝜓′ ↔ [𝐺 / 𝑓]𝜓) & ⊢ (𝜒′ ↔ [𝐺 / 𝑓]𝜒) & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝜒′ ↔ (𝑁 ∈ 𝐷 ∧ 𝐺 Fn 𝑁 ∧ 𝜑′ ∧ 𝜓′)) | ||
Theorem | bnj982 32767 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜒) & ⊢ (𝜃 → ∀𝑥𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj1019 32768* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | ||
Theorem | bnj1023 32769 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑥(𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ∃𝑥(𝜑 → 𝜒) | ||
Theorem | bnj1095 32770 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
Theorem | bnj1096 32771* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏 ∧ 𝜑)) ⇒ ⊢ (𝜓 → ∀𝑥𝜓) | ||
Theorem | bnj1098 32772* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) | ||
Theorem | bnj1101 32773 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑥(𝜑 → 𝜓) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ ∃𝑥(𝜒 → 𝜓) | ||
Theorem | bnj1113 32774* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐶 𝐸 = ∪ 𝑥 ∈ 𝐷 𝐸) | ||
Theorem | bnj1109 32775 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑥((𝐴 ≠ 𝐵 ∧ 𝜑) → 𝜓) & ⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝜓) ⇒ ⊢ ∃𝑥(𝜑 → 𝜓) | ||
Theorem | bnj1131 32776 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ ∃𝑥𝜑 ⇒ ⊢ 𝜑 | ||
Theorem | bnj1138 32777 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | ||
Theorem | bnj1142 32778 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | bnj1143 32779* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 | ||
Theorem | bnj1146 32780* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 | ||
Theorem | bnj1149 32781 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | bnj1185 32782* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
Theorem | bnj1196 32783 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | ||
Theorem | bnj1198 32784 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜓′ ↔ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓′) | ||
Theorem | bnj1209 32785* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) ⇒ ⊢ (𝜒 → ∃𝑥𝜃) | ||
Theorem | bnj1211 32786 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | bnj1213 32787 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜃 → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜃 → 𝑥 ∈ 𝐵) | ||
Theorem | bnj1212 32788* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) ⇒ ⊢ (𝜃 → 𝑥 ∈ 𝐴) | ||
Theorem | bnj1219 32789 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 ↔ (𝜑 ∧ 𝜓 ∧ 𝜁)) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝜏 ∧ 𝜂)) ⇒ ⊢ (𝜃 → 𝜓) | ||
Theorem | bnj1224 32790 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ¬ (𝜃 ∧ 𝜏 ∧ 𝜂) ⇒ ⊢ ((𝜃 ∧ 𝜏) → ¬ 𝜂) | ||
Theorem | bnj1230 32791* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} ⇒ ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) | ||
Theorem | bnj1232 32792 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | bnj1235 32793 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | bnj1239 32794 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒) → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | bnj1238 32795 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | bnj1241 32796 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐵) | ||
Theorem | bnj1247 32797 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | bnj1254 32798 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | bnj1262 32799 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | ||
Theorem | bnj1266 32800 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → ∃𝑥(𝜑 ∧ 𝜓)) ⇒ ⊢ (𝜒 → ∃𝑥𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |