| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcobijfs2 | Structured version Visualization version GIF version | ||
| Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also fcobijfs 32684 and mapfien 9317. (Contributed by Thierry Arnoux, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| fcobijfs2.1 | ⊢ (𝜑 → 𝐺:𝑅–1-1-onto→𝑆) |
| fcobijfs2.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
| fcobijfs2.3 | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| fcobijfs2.4 | ⊢ (𝜑 → 𝑇 ∈ 𝑊) |
| fcobijfs2.5 | ⊢ (𝜑 → 𝑂 ∈ 𝑇) |
| fcobijfs2.7 | ⊢ 𝑋 = {𝑔 ∈ (𝑇 ↑m 𝑆) ∣ 𝑔 finSupp 𝑂} |
| fcobijfs2.8 | ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑂} |
| Ref | Expression |
|---|---|
| fcobijfs2 | ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝑓 ∘ 𝐺)):𝑋–1-1-onto→𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcobijfs2.7 | . . . . 5 ⊢ 𝑋 = {𝑔 ∈ (𝑇 ↑m 𝑆) ∣ 𝑔 finSupp 𝑂} | |
| 2 | breq1 5098 | . . . . . 6 ⊢ (ℎ = 𝑔 → (ℎ finSupp 𝑂 ↔ 𝑔 finSupp 𝑂)) | |
| 3 | 2 | cbvrabv 3407 | . . . . 5 ⊢ {ℎ ∈ (𝑇 ↑m 𝑆) ∣ ℎ finSupp 𝑂} = {𝑔 ∈ (𝑇 ↑m 𝑆) ∣ 𝑔 finSupp 𝑂} |
| 4 | 1, 3 | eqtr4i 2755 | . . . 4 ⊢ 𝑋 = {ℎ ∈ (𝑇 ↑m 𝑆) ∣ ℎ finSupp 𝑂} |
| 5 | eqid 2729 | . . . 4 ⊢ {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp (( I ↾ 𝑇)‘𝑂)} = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp (( I ↾ 𝑇)‘𝑂)} | |
| 6 | eqid 2729 | . . . 4 ⊢ (( I ↾ 𝑇)‘𝑂) = (( I ↾ 𝑇)‘𝑂) | |
| 7 | fcobijfs2.1 | . . . 4 ⊢ (𝜑 → 𝐺:𝑅–1-1-onto→𝑆) | |
| 8 | f1oi 6806 | . . . . 5 ⊢ ( I ↾ 𝑇):𝑇–1-1-onto→𝑇 | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝑇):𝑇–1-1-onto→𝑇) |
| 10 | fcobijfs2.3 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 11 | fcobijfs2.4 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑊) | |
| 12 | fcobijfs2.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
| 13 | fcobijfs2.5 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑇) | |
| 14 | 4, 5, 6, 7, 9, 10, 11, 12, 11, 13 | mapfien 9317 | . . 3 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (( I ↾ 𝑇) ∘ (𝑓 ∘ 𝐺))):𝑋–1-1-onto→{ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp (( I ↾ 𝑇)‘𝑂)}) |
| 15 | fvresi 7113 | . . . . . . 7 ⊢ (𝑂 ∈ 𝑇 → (( I ↾ 𝑇)‘𝑂) = 𝑂) | |
| 16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (( I ↾ 𝑇)‘𝑂) = 𝑂) |
| 17 | 16 | breq2d 5107 | . . . . 5 ⊢ (𝜑 → (ℎ finSupp (( I ↾ 𝑇)‘𝑂) ↔ ℎ finSupp 𝑂)) |
| 18 | 17 | rabbidv 3404 | . . . 4 ⊢ (𝜑 → {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp (( I ↾ 𝑇)‘𝑂)} = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑂}) |
| 19 | fcobijfs2.8 | . . . 4 ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑂} | |
| 20 | 18, 19 | eqtr4di 2782 | . . 3 ⊢ (𝜑 → {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp (( I ↾ 𝑇)‘𝑂)} = 𝑌) |
| 21 | 14, 20 | f1oeq3dd 32591 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (( I ↾ 𝑇) ∘ (𝑓 ∘ 𝐺))):𝑋–1-1-onto→𝑌) |
| 22 | 1 | ssrab3 4035 | . . . . . 6 ⊢ 𝑋 ⊆ (𝑇 ↑m 𝑆) |
| 23 | 22 | sseli 3933 | . . . . 5 ⊢ (𝑓 ∈ 𝑋 → 𝑓 ∈ (𝑇 ↑m 𝑆)) |
| 24 | elmapi 8783 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑇 ↑m 𝑆) → 𝑓:𝑆⟶𝑇) | |
| 25 | f1of 6768 | . . . . . . . 8 ⊢ (𝐺:𝑅–1-1-onto→𝑆 → 𝐺:𝑅⟶𝑆) | |
| 26 | 7, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑅⟶𝑆) |
| 27 | fco 6680 | . . . . . . 7 ⊢ ((𝑓:𝑆⟶𝑇 ∧ 𝐺:𝑅⟶𝑆) → (𝑓 ∘ 𝐺):𝑅⟶𝑇) | |
| 28 | 24, 26, 27 | syl2anr 597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑇 ↑m 𝑆)) → (𝑓 ∘ 𝐺):𝑅⟶𝑇) |
| 29 | fcoi2 6703 | . . . . . 6 ⊢ ((𝑓 ∘ 𝐺):𝑅⟶𝑇 → (( I ↾ 𝑇) ∘ (𝑓 ∘ 𝐺)) = (𝑓 ∘ 𝐺)) | |
| 30 | 28, 29 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑇 ↑m 𝑆)) → (( I ↾ 𝑇) ∘ (𝑓 ∘ 𝐺)) = (𝑓 ∘ 𝐺)) |
| 31 | 23, 30 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (( I ↾ 𝑇) ∘ (𝑓 ∘ 𝐺)) = (𝑓 ∘ 𝐺)) |
| 32 | 31 | mpteq2dva 5188 | . . 3 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (( I ↾ 𝑇) ∘ (𝑓 ∘ 𝐺))) = (𝑓 ∈ 𝑋 ↦ (𝑓 ∘ 𝐺))) |
| 33 | 32 | f1oeq1d 6763 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝑋 ↦ (( I ↾ 𝑇) ∘ (𝑓 ∘ 𝐺))):𝑋–1-1-onto→𝑌 ↔ (𝑓 ∈ 𝑋 ↦ (𝑓 ∘ 𝐺)):𝑋–1-1-onto→𝑌)) |
| 34 | 21, 33 | mpbid 232 | 1 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝑓 ∘ 𝐺)):𝑋–1-1-onto→𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 class class class wbr 5095 ↦ cmpt 5176 I cid 5517 ↾ cres 5625 ∘ ccom 5627 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-1o 8395 df-map 8762 df-en 8880 df-dom 8881 df-fin 8883 df-fsupp 9271 |
| This theorem is referenced by: mplvrpmfgalem 33564 |
| Copyright terms: Public domain | W3C validator |