![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege61c | Structured version Visualization version GIF version |
Description: Lemma for frege65c 39063. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege59c.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege61c | ⊢ (([𝐴 / 𝑥]𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege59c.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | frege58c 39056 | . 2 ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) |
3 | frege9 38947 | . 2 ⊢ ((∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) → (([𝐴 / 𝑥]𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓))) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (([𝐴 / 𝑥]𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1656 ∈ wcel 2166 [wsbc 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-12 2222 ax-ext 2804 ax-frege1 38925 ax-frege2 38926 ax-frege8 38944 ax-frege58b 39036 |
This theorem depends on definitions: df-bi 199 df-an 387 df-tru 1662 df-ex 1881 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-v 3417 df-sbc 3664 |
This theorem is referenced by: frege65c 39063 |
Copyright terms: Public domain | W3C validator |