Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege61c Structured version   Visualization version   GIF version

Theorem frege61c 41394
Description: Lemma for frege65c 41398. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege61c (([𝐴 / 𝑥]𝜑𝜓) → (∀𝑥𝜑𝜓))

Proof of Theorem frege61c
StepHypRef Expression
1 frege59c.a . . 3 𝐴𝐵
21frege58c 41391 . 2 (∀𝑥𝜑[𝐴 / 𝑥]𝜑)
3 frege9 41282 . 2 ((∀𝑥𝜑[𝐴 / 𝑥]𝜑) → (([𝐴 / 𝑥]𝜑𝜓) → (∀𝑥𝜑𝜓)))
42, 3ax-mp 5 1 (([𝐴 / 𝑥]𝜑𝜓) → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1541  wcel 2112  [wsbc 3712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-frege1 41260  ax-frege2 41261  ax-frege8 41279  ax-frege58b 41371
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-sbc 3713
This theorem is referenced by:  frege65c  41398
  Copyright terms: Public domain W3C validator