Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege91 Structured version   Visualization version   GIF version

Theorem frege91 39087
Description: Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege91 (𝑋𝑅𝑌𝑋(t+‘𝑅)𝑌)

Proof of Theorem frege91
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frege91.y . . . . 5 𝑌𝑉
21frege63c 39059 . . . 4 ([𝑌 / 𝑎]𝑋𝑅𝑎 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝑌 / 𝑎]𝑎𝑓)))
3 sbcbr2g 4933 . . . . . 6 (𝑌𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎𝑋𝑅𝑌 / 𝑎𝑎))
4 csbvarg 4229 . . . . . . 7 (𝑌𝑉𝑌 / 𝑎𝑎 = 𝑌)
54breq2d 4887 . . . . . 6 (𝑌𝑉 → (𝑋𝑅𝑌 / 𝑎𝑎𝑋𝑅𝑌))
63, 5bitrd 271 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎𝑋𝑅𝑌))
71, 6ax-mp 5 . . . 4 ([𝑌 / 𝑎]𝑋𝑅𝑎𝑋𝑅𝑌)
8 sbcel1v 3721 . . . . . 6 ([𝑌 / 𝑎]𝑎𝑓𝑌𝑓)
98imbi2i 328 . . . . 5 ((∀𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝑌 / 𝑎]𝑎𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))
109imbi2i 328 . . . 4 ((𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝑌 / 𝑎]𝑎𝑓)) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
112, 7, 103imtr3i 283 . . 3 (𝑋𝑅𝑌 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
1211alrimiv 2026 . 2 (𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
13 frege91.x . . 3 𝑋𝑈
14 frege91.r . . 3 𝑅𝑊
1513, 1, 14frege90 39086 . 2 ((𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))) → (𝑋𝑅𝑌𝑋(t+‘𝑅)𝑌))
1612, 15ax-mp 5 1 (𝑋𝑅𝑌𝑋(t+‘𝑅)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1654  wcel 2164  [wsbc 3662  csb 3757   class class class wbr 4875  cfv 6127  t+ctcl 14110   hereditary whe 38905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-frege1 38923  ax-frege2 38924  ax-frege8 38942  ax-frege52a 38990  ax-frege58b 39034
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-ifp 1090  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-seq 13103  df-trcl 14112  df-relexp 14145  df-he 38906
This theorem is referenced by:  frege92  39088
  Copyright terms: Public domain W3C validator