![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege91 | Structured version Visualization version GIF version |
Description: Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege91 | ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege91.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
2 | 1 | frege63c 39059 | . . . 4 ⊢ ([𝑌 / 𝑎]𝑋𝑅𝑎 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓))) |
3 | sbcbr2g 4933 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅⦋𝑌 / 𝑎⦌𝑎)) | |
4 | csbvarg 4229 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑎⦌𝑎 = 𝑌) | |
5 | 4 | breq2d 4887 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (𝑋𝑅⦋𝑌 / 𝑎⦌𝑎 ↔ 𝑋𝑅𝑌)) |
6 | 3, 5 | bitrd 271 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑌)) |
7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑌) |
8 | sbcel1v 3721 | . . . . . 6 ⊢ ([𝑌 / 𝑎]𝑎 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
9 | 8 | imbi2i 328 | . . . . 5 ⊢ ((∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓) ↔ (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
10 | 9 | imbi2i 328 | . . . 4 ⊢ ((𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓)) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
11 | 2, 7, 10 | 3imtr3i 283 | . . 3 ⊢ (𝑋𝑅𝑌 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
12 | 11 | alrimiv 2026 | . 2 ⊢ (𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
13 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
14 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
15 | 13, 1, 14 | frege90 39086 | . 2 ⊢ ((𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌)) |
16 | 12, 15 | ax-mp 5 | 1 ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1654 ∈ wcel 2164 [wsbc 3662 ⦋csb 3757 class class class wbr 4875 ‘cfv 6127 t+ctcl 14110 hereditary whe 38905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-frege1 38923 ax-frege2 38924 ax-frege8 38942 ax-frege52a 38990 ax-frege58b 39034 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-ifp 1090 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-n0 11626 df-z 11712 df-uz 11976 df-seq 13103 df-trcl 14112 df-relexp 14145 df-he 38906 |
This theorem is referenced by: frege92 39088 |
Copyright terms: Public domain | W3C validator |