![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege91 | Structured version Visualization version GIF version |
Description: Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege91 | ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege91.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
2 | 1 | frege63c 42980 | . . . 4 ⊢ ([𝑌 / 𝑎]𝑋𝑅𝑎 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓))) |
3 | sbcbr2g 5206 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅⦋𝑌 / 𝑎⦌𝑎)) | |
4 | csbvarg 4431 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑎⦌𝑎 = 𝑌) | |
5 | 4 | breq2d 5160 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (𝑋𝑅⦋𝑌 / 𝑎⦌𝑎 ↔ 𝑋𝑅𝑌)) |
6 | 3, 5 | bitrd 279 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑌)) |
7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑌) |
8 | sbcel1v 3848 | . . . . . 6 ⊢ ([𝑌 / 𝑎]𝑎 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
9 | 8 | imbi2i 336 | . . . . 5 ⊢ ((∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓) ↔ (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
10 | 9 | imbi2i 336 | . . . 4 ⊢ ((𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓)) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
11 | 2, 7, 10 | 3imtr3i 291 | . . 3 ⊢ (𝑋𝑅𝑌 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
12 | 11 | alrimiv 1929 | . 2 ⊢ (𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
13 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
14 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
15 | 13, 1, 14 | frege90 43007 | . 2 ⊢ ((𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌)) |
16 | 12, 15 | ax-mp 5 | 1 ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 ∈ wcel 2105 [wsbc 3777 ⦋csb 3893 class class class wbr 5148 ‘cfv 6543 t+ctcl 14937 hereditary whe 42826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-frege1 42844 ax-frege2 42845 ax-frege8 42863 ax-frege52a 42911 ax-frege58b 42955 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-seq 13972 df-trcl 14939 df-relexp 14972 df-he 42827 |
This theorem is referenced by: frege92 43009 |
Copyright terms: Public domain | W3C validator |