Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege91 Structured version   Visualization version   GIF version

Theorem frege91 43944
Description: Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege91 (𝑋𝑅𝑌𝑋(t+‘𝑅)𝑌)

Proof of Theorem frege91
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frege91.y . . . . 5 𝑌𝑉
21frege63c 43916 . . . 4 ([𝑌 / 𝑎]𝑋𝑅𝑎 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝑌 / 𝑎]𝑎𝑓)))
3 sbcbr2g 5206 . . . . . 6 (𝑌𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎𝑋𝑅𝑌 / 𝑎𝑎))
4 csbvarg 4440 . . . . . . 7 (𝑌𝑉𝑌 / 𝑎𝑎 = 𝑌)
54breq2d 5160 . . . . . 6 (𝑌𝑉 → (𝑋𝑅𝑌 / 𝑎𝑎𝑋𝑅𝑌))
63, 5bitrd 279 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎𝑋𝑅𝑌))
71, 6ax-mp 5 . . . 4 ([𝑌 / 𝑎]𝑋𝑅𝑎𝑋𝑅𝑌)
8 sbcel1v 3862 . . . . . 6 ([𝑌 / 𝑎]𝑎𝑓𝑌𝑓)
98imbi2i 336 . . . . 5 ((∀𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝑌 / 𝑎]𝑎𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))
109imbi2i 336 . . . 4 ((𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝑌 / 𝑎]𝑎𝑓)) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
112, 7, 103imtr3i 291 . . 3 (𝑋𝑅𝑌 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
1211alrimiv 1925 . 2 (𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
13 frege91.x . . 3 𝑋𝑈
14 frege91.r . . 3 𝑅𝑊
1513, 1, 14frege90 43943 . 2 ((𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))) → (𝑋𝑅𝑌𝑋(t+‘𝑅)𝑌))
1612, 15ax-mp 5 1 (𝑋𝑅𝑌𝑋(t+‘𝑅)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2106  [wsbc 3791  csb 3908   class class class wbr 5148  cfv 6563  t+ctcl 15021   hereditary whe 43762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-frege1 43780  ax-frege2 43781  ax-frege8 43799  ax-frege52a 43847  ax-frege58b 43891
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-trcl 15023  df-relexp 15056  df-he 43763
This theorem is referenced by:  frege92  43945
  Copyright terms: Public domain W3C validator