![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege91 | Structured version Visualization version GIF version |
Description: Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege91 | ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege91.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
2 | 1 | frege63c 43235 | . . . 4 ⊢ ([𝑌 / 𝑎]𝑋𝑅𝑎 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓))) |
3 | sbcbr2g 5199 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅⦋𝑌 / 𝑎⦌𝑎)) | |
4 | csbvarg 4426 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑎⦌𝑎 = 𝑌) | |
5 | 4 | breq2d 5153 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (𝑋𝑅⦋𝑌 / 𝑎⦌𝑎 ↔ 𝑋𝑅𝑌)) |
6 | 3, 5 | bitrd 279 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑌)) |
7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ ([𝑌 / 𝑎]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑌) |
8 | sbcel1v 3843 | . . . . . 6 ⊢ ([𝑌 / 𝑎]𝑎 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
9 | 8 | imbi2i 336 | . . . . 5 ⊢ ((∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓) ↔ (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
10 | 9 | imbi2i 336 | . . . 4 ⊢ ((𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝑌 / 𝑎]𝑎 ∈ 𝑓)) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
11 | 2, 7, 10 | 3imtr3i 291 | . . 3 ⊢ (𝑋𝑅𝑌 → (𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
12 | 11 | alrimiv 1922 | . 2 ⊢ (𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
13 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
14 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
15 | 13, 1, 14 | frege90 43262 | . 2 ⊢ ((𝑋𝑅𝑌 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌)) |
16 | 12, 15 | ax-mp 5 | 1 ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 ∈ wcel 2098 [wsbc 3772 ⦋csb 3888 class class class wbr 5141 ‘cfv 6536 t+ctcl 14935 hereditary whe 43081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-frege1 43099 ax-frege2 43100 ax-frege8 43118 ax-frege52a 43166 ax-frege58b 43210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-seq 13970 df-trcl 14937 df-relexp 14970 df-he 43082 |
This theorem is referenced by: frege92 43264 |
Copyright terms: Public domain | W3C validator |